
Max-Plus Algebra Toolbox
for Matlabr

Jarosław Stańczyk
<jaroslaw.stanczyk@up.wroc.pl>

Version 1.7, Tuesday 14th June, 2016

mailto:jaroslaw.stanczyk@up.wroc.pl

Contents

Preface 5
Technical Conventions . 5
Copyright Information . 5
Feedback . 5
Installation . 6

Installation in GNU Octave 6

1 Introduction 7

2 (max, +) algebra 9
2.1 Basic operations . 9
2.2 Matrices . 11
2.3 Connection with graph theory 16
2.4 Linear equations . 19

2.4.1 Problem Ax = b . 19
2.4.2 Problem x = Ax⊕ b 20
2.4.3 Spectral problem Ax = λx 21

3 A bit of the (min, +) algebra 30

4 State space description of DES 33
4.1 Introduction . 33
4.2 State space description of timed event graph 35
4.3 Analysis of DES . 36

4.3.1 Graphical representation – Gantt charts 36
4.4 Examples of DES . 36

4.4.1 A simple production system 36
4.4.2 Multi-product manufacturing system 40

5 Miscellaneous functions and data structures 47
5.1 Functions . 47
5.2 Data structures . 47

6 Toolbox function reference 48
mp_add . 48
mp_conv . 49
mp_div . 50
mp_egv_bo93 . 52
mp_egv_o91 . 53
mp_egv_pqc . 54

2

mp_egv_sw001 . 55
mp_egv_sw002 . 56
mp_ev_fw . 57
mp_eye . 59
mp_ganttr . 59
mp_ganttx . 61
mp_inv . 63
mp_is_egv1 . 65
mp_is_egv2 . 66
mp_is_pga . 67
mp_is_pgc . 68
mp_is_pgsc1 . 68
mp_is_pgsc2 . 69
mp_mcm . 70
mp_mcm_fw . 71
mp_mcm_karp . 72
mp_multi . 73
mp_mx_fw . 74
mp_mx2latex . 76
mp_one . 77
mp_ones . 77
mp_power . 78
mp_pqc . 79
mp_randi . 81
mp_solve_Axb . 81
mp_solve_xAxb . 83
mp_star . 84
mp_system . 87
mp_trace . 88
mp_zero . 89
mp_zeros . 89
mpm_add . 90
mpm_div . 91
mpm_eye . 93
mpm_inv . 94
mpm_multi . 95
mpm_mx2latex . 97
mpm_one . 98
mpm_ones . 98
mpm_plus . 99
mpm_power . 100
mpm_star . 102
mpm_zero . 104
mpm_zeros . 105

3

Bibliography 106

Notation 109
Acronyms . 109
Sets . 109
Matrices and Vectors . 109
(max, +) Algebra . 109
(min, +) Algebra . 110
Miscellaneous . 110

GNU Free Documentation License 111

GNU Affero General Public License 120

Index 134

4

Preface

It is a short guide, to the Max–Plus Algebra Toolbox for Matlabr. This
toolbox can be useful tool for calculation in the (max, +) algebra and for
design and analysis of certain classes of Discrete Event Systems (DESs).
The systems for which the (max, +) algebra is a convenient formalism are
characterised by the aspect of synchronisation.

The Max–Plus Algebra Toolbox is a collection of functions that extend
the capabilities of the Matlabr computing environment. It also correctly
works under GNU Octave.

All functions in this toolbox are available in source code as M-files. The
code for these functions can be viewed by using the statement:

>> type function_name

Users can extend the capabilities of this toolbox by writing their own M-files,
or by using it in combination with other toolboxes. A short description of
all the functions in this toolbox can be obtain by:

>> help function_name

Technical Conventions

In this contribution, we follow the (max, +) algebra notation used in [Bac-
celli et al. 1992].

Copyright Information

Copyright © 2004, 2005, 2016 Jarosław Stańczyk.
Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3 (GNU
FDLv1.3) or any later version published by the Free Software Foundation.
A copy of the license is included in the section entitled GNU Free Documen-
tation License.

The source code for The Max–Plus Algebra Toolbox is freely redis-
tributable under the terms of the GNU Affero General Public License ver-
sion 3 (GNU AGPLv3) as published by the Free Software Foundation. A
copy of the license is included in the section entitled GNU Affero General
Public License.

Feedback

I hope you will find this Max–Plus Algebra Toolbox helpful. If you have
any suggestions or comments related to this toolbox or manual please con-
tact. If you are using this toolbox, I would like to be informed, so, please

5

http://www.mathworks.com
http://www.octave.org
http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/agpl-3.0.en.html
http://www.fsf.org/

send me an email, I will let you know about new versions, bug fixed, updates,
etc.

Jarosław Stańczyk
<jaroslaw.stanczyk@up.wroc.pl>

The current version of this document is available on
http://gen.up.wroc.pl/stanczyk/mpa/

Installation

Installation in GNU Octave

Max-Plus Algebra Toolbox package is available as a .tar.gz file. Using
File Browswer window go to the directory where the max-plus-1.7.tar.gz
is located. Then package can be installed from the Octave prompt with the
command

>> pkg install max−plus−1.7

If the package is installed successfully nothing will be printed on the prompt,
but if an error occurred during installation it will be reported.
It is possible to install several package versions. If a different version of
the package is already installed it will be removed prior to installing the
new package. This makes it easy to upgrade and downgrade the version
of a package, but makes it impossible to have several versions of the same
package installed at once.

To see which packages are installed type

>> pkg list

−| Package Name | Version | Installation directory

−|−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−
−| max−plus *| 1.7.0 | /home/js/octave/max−plus−1.7.0

In this case only version 1.7of the package is installed. The ’*’ character
next to the package name shows that the image package is loaded and ready
for use.

To load the package into octave workspace type

>> pkg load max−plus

To use the toolbox it is necessary to invoke GNU Octave with option
--traditional (compatibility with Matlabr), i.e.

$ octave −−traditional

6

mailto:jaroslaw.stanczyk@up.wroc.pl
http://gen.up.wroc.pl/stanczyk/mpa/

1 Introduction

Many phenomena from manufacturing systems, telecommunication net-
works and transportation systems can be described as so-called discrete event
systems (DES), or discrete event dynamic systems. A DES is a dynamic
asynchronous system where the state transitions are initiated by events that
occur at discrete instants of time. An event corresponds to the start or the
end of an activity. A common property of such examples is that the start
of an activity depends on termination of several other activities. Such sys-
tems cannot conveniently be described by differential or difference equations,
and naturally exhibit a periodic behaviour.

An introduction to DES is given in e.g. [Cassandras and Lafortune 2007].
Many frameworks exist for studying DES. Examples are queueing theory,
e.g. [Gross et al. 2008], Petri nets, e.g.[Murata 1989], the (max, +) algebra
[Baccelli et al. 1992] and many others. The most widely used technique
to analyse DES is computer simulation. Major drawback of simulation is that
it often does not give a real understanding of how parameter changes affect
important system properties such as stability, robustness and optimality of
system performance. Analytical techniques can provide a much better insight
in this respect. Therefore, formal methods are to be preferred as tools for
modelling, analysis and control of DES. The theory of DES can be divided
presently into three main approaches:

• the logical approach which considers the occurrence of events or the
impossibility of this occurrence and the series of these events, but does
not consider the precise time of those occurrences, e.g. an automata
and formal language theory [Ramadge and Wonham 1989];

• the quantitative approach which addresses the issue of performance
evaluation (evaluated by the number of events occurring in a given
lapse of time), and that of performance optimisation, e.g. timed Petri
nets or the (max, +) algebra;

• the stochasic approach which considers the occurrence of events under
some given statistical conditions e.g. semi–Markov precesses [Limnios
and Oproşan 2013].

The (max, +) algebra was first introduced in [Cuninghame–Green 1979].
A standard reference is [Baccelli et al. 1992], a brief survey of methods and
applications of this algebra is given in [Cohen, Gaubert, and Quadrat 1999],
[Bernd Heidergott, G. J. Olsder, and van der Woude 2005] and [De Schutter
and Ton van den Boom 2008]. In certain aspects, the (max, +) algebra is
comparable to the conventional algebra. In the (max, +) algebra the addition
(+) and multiplication (×) operators from the conventional algebra are re-
placed by the maximization (max) and addition (+) operators, respectively.

7

Using these operators, a linear description (in the (max, +) algebra sense)
of certain non–linear systems (in the conventional algebra) is achieved. Sys-
tems for which the (max, +) algebra is a proper formalism are characterized
by aspect of synchronization.

In the last decade, a number of new directions appear in (max, +) sys-
tems theory, e.g. optimal control [Komenda, El Moudni, and Zerhouni 2001],
[Maia et al. 2003], adaptive control [Menguy et al. 2000], stochastic control
[B. Heidergott and de Vries 2001], model predictive control [T. van den Boom
and De Schutter 2002], [T. J. van den Boom et al. 2003], etc.

This paper presents a software tool for rapid prototyping, modelling,
control and analysis of certain classes of DESs. A Max-Plus Algebra Toolbox
for Matlab [Stańczyk 2016], [Stańczyk, Mayer, and Raisch 2004] is a set
of several dozen of functions implementing major aspects of the (max, +)
algebra in the Matlab environment.

There are other tools available in the Internet for computation in (max, +)
algebra, e.g. open-source distributed:

• the MaxPlus Toolbox for Scilab [MaxPlus Working Group 2003];

• MAX : a Maple package [Gaubert 1992];

• C++ MinMax library : [Gruet et al. 2015].

Main drawback of first two toolboxes presented above is that are not devel-
oped and expanded. Only C++ library is a new one and fast, but is devoted
to use in C++ language.

8

2 (max, +) algebra

2.1 Basic operations

Definition 2.1 Max–plus algebra
The (max, +) algebra is defined as follows:

• Rε = R ∪ {−∞}, where R is the field of real numbers;

• ∀a, b ∈ Rε : a⊕ b ≡ max(a, b);

• ∀a, b ∈ Rε : a⊗ b ≡ a+ b.

The algebraic structure Rmax = (Rε,⊕,⊗) is called the max-plus algebra.
We introduce the notation of ε = −∞ and e = 0 folowing [Baccelli et
al. 1992]. Notation ε and e instead of −∞ and 0 respectively, is used for
emphasis their special meanings and to avoid confusion with their roles in
the conventional algebra. More specifically, the algebraic structure Rmax is
an idempotent, commutative semiring (or dioid). This structure satisfies
axioms:

• operation ⊕:

– associativity:

∀a, b, c ∈ Rε : (a⊕ b)⊕ c = a⊕ (b⊕ c);

– commutativity:

∀a, b ∈ Rε : a⊕ b = b⊕ a;

– a neutral element (ε):

∀a ∈ Rε : a⊕ ε = ε⊕ a = a;

– idempotent:

∀a ∈ Rε : a⊕ a = a;

• operation ⊗:

– associativity:

∀a, b, c ∈ Rε : (a⊗ b)⊗ c = a⊗ (b⊗ c);

9

– commutative:

∀a, b ∈ Rε : a⊗ b = b⊗ a;

– a neutral element (e):

∀a ∈ Rε : e⊗ a = a⊗ e = a;

– an absorbing element (ε)1:

∀a ∈ Rε : a⊗ ε = ε⊗ a = ε;

– distributivity with respect to ⊕:

∀a, b, c ∈ Rε : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c),
(b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a).

We do not use e to denote a neutral element of operation ⊗, instead we use
its numerical value (0) to avoid confusion with the number e = exp(1).
Note that non–zero elements do not have an inverse for ⊕, because a⊕x = b
does not have a solution if a > b.
We will write ab for a⊗ b whenever there is no possible confusion.

Definition 2.2 (max, +) power
Let a ∈ R and b ∈ Rε, the a–th (max, +) power of b is denoted by ba,
and corresponds to ab in conventional algebra.
If a = 0 then ba = b0 = 0.
If b = ε and a > 0 then ba = εa = ε.
If b = ε and a < 0 then ba = εa is not defined.
ε0 = 0 by definition.

Definition 2.3 (max, +) inversion

∀a ∈ Rε : a−1 ⊗ a = a⊗ a−1 = 0 (1)

Definition 2.4 (max, +) division
Let a ∈ Rε and b ∈ R, the (max, +) division is defined as follows:

a

b
= a� b = ab−1. (2)

If b = ε then a� b is not defined.

It is possible to derive the min operation from the (max, +) operations as
follows:

min(a, b) = ab� (a⊕ b).

1In this convention −∞+∞ = −∞.

10

Table 1: Notations in the (max, +) and the conventional algebra.

(max, +) notation conventional notation example
a⊕ b max(a, b) 3⊕ 2 = 3
a⊗ b a+ b 3⊗ 2 = 5
ab b× a 32 = 3⊗ 3 = 6

a1/b a× 1
b 31/2 =

√
3 = 1.5

a−b −b× a 3−2 = −6
a

b
= a� b a− b 0� 3 = −3

Table 2: Scalar’s basic functions.

operation toolbox function
ε mp_zero or mp_zeros or -Inf
0 mp_one or mp_ones or 0
a⊕ b mp_add(a,b)
a⊗ b mp_multi(a,b)
a(−1) mp_inv(a) or mp_power(a,-1)
ab mp_power(a,b)
a1/b mp_power(a,1/b)
a−b mp_power(a,-b)
a� b mp_div(a,b) or mp_multi(a, mp_inv(b))

2.2 Matrices

Now, we extend the (max, +) algebra operations to vectors and matrices.

Definition 2.5 Scalar–vector addition
The (max, +) sum of a scalar a ∈ Rε and a vector b ∈ Rnε is a vector
(a⊕ b) ∈ Rnε , defined by:

(a⊕ b)i = a⊕ (b)i, i = 1, . . . , n. (3)

A scalar–matrix addition is defined in a similar way.

Example 2.6 A (max, +) scalar-vector addition

4⊕
[
2
8

]
=

[
4⊕ 2
4⊕ 8

]
=

[
4
8

]
.

Definition 2.7 Matrix addition
The sum ⊕ of matrices A,B ∈ Rm×nε is a matrix (A ⊕ B) ∈ Rm×nε

11

obtained by adding corresponding entries. That is,

(A⊕B)ij = (A)ij ⊕ (B)ij , i = 1, . . . ,m; j = 1, . . . , n. (4)

Example 2.8 A (max, +) matrix addition[
1 6
8 3

]
⊕
[
2 5
3 3

]
=

[
1⊕ 2 6⊕ 5
8⊕ 3 3⊕ 3

]
=

[
2 6
8 3

]
.

Definition 2.9 Scalar–vector multiplication
We define the product of a scalar a ∈ Rε and a vector b ∈ Rnε as a vector
(a⊗ b) ∈ Rnε :

(a⊗ b)i = a⊗ (b)i, i = 1, . . . , n. (5)

Scalar–matrix multiplication is defined in a similar way.

Example 2.10 A (max, +) scalar–vector multiplication

4⊗
[
2
8

]
=

[
4⊗ 2
4⊗ 8

]
=

[
6
12

]
.

Definition 2.11 Matrix multiplication
The product ⊗ of matrices A ∈ Rm×pε and B ∈ Rp×nε is a matrix
(A ⊗ B) ∈ Rm×nε , whose (i, j)–entry is the inner product of the ith row
of A with the jth column in B. That is,

(A⊗B)ij =

p⊕
k=1

(A)ik ⊗ (B)kj (6)

≡ max
k

((A)ik + (B)kj), i = 1, . . . ,m; j = 1, . . . , n,

where:
m⊕
j=1

aj is short–hand for a1 ⊕ · · · ⊕ am.

A vector-matrix product is defined in a similar way.

Example 2.12 A (max, +) vector-matrix and matrix-matrix products

[
2 8

]
⊗
[
2 0
ε 5

]
=[

(2⊗ 2)⊕ (8⊗ ε) (2⊗ 0)⊕ (8⊗ 5)
]

=[
4⊕ ε 2⊕ 13

]
=

[
4 13

]
;

12

c) [
1 6 2
8 3 4

]
⊗

 2 5
3 3
1 6

 =

[
(1⊗ 2)⊕ (6⊗ 3)⊕ (2⊗ 1) (1⊗ 5)⊕ (6⊗ 3)⊕ (2⊗ 6)
(8⊗ 2)⊕ (3⊗ 3)⊕ (4⊗ 1) (8⊗ 5)⊕ (3⊗ 3)⊕ (4⊗ 6)

]
=[

3⊕ 9⊕ 3 6⊕ 9⊕ 8
10⊕ 6⊕ 5 13⊕ 6⊕ 10

]
=

[
9 9
10 13

]
.

Definition 2.13 Identity matrix
The matrix In ∈ Rn×nε with 0’s on the main diagonal and ε’s elsewhere
is called the identity matrix of order n.

Identity matrix is a neutral element for matrices ⊗ operation:

A⊗ I = A (7)

Definition 2.14 Zero matrix
The matrix εm×n with (ε)ij = ε for all i, j, is the zero–matrix.

Zero matrix is a neutral element for matrices ⊕ operation:

A⊕ ε = A (8)

and

A⊗ ε = ε (9)

Definition 2.15 (max, +) matrix power
Let A ∈ Rn×nε and b ∈ N0, the b–th (max, +) power of A is defined as
follows:

Ab = A⊗ · · · ⊗A︸ ︷︷ ︸ =
b⊗
i=1

A.

b

(10)

If b = 0 then A0 = I.
If b = −1 see theorem 2.16.
If b /∈ N0 ∪ {−1} then Ab is not defined.
N0 is the set of nonnegative integers.

13

Theorem 2.16 [Cuninghame–Green 1979]
A matrix A ∈ Rn×nε is invertible in the (max, +) algebra if and only if
it can be factorized as

A = DP, (11)
where:

D ∈ Rn×nε is a matrix with non-εdiagonal entries
P ∈ Rn×nε is a permutation matrix.

Then
A−1 = P−1D−1

where:
(D−1)ii = −(D)ii,

P−1 = PT .

Example 2.17 Matrix inversion

Consider A =

 ε ε 3
−2 ε ε
ε 0 ε

.
This matrix is (max, +)–invertible:

A =

 ε ε 3
−2 ε ε
ε 0 ε

= DP

=

 3 ε ε
ε −2 ε
ε ε 0

 ε ε 0
0 ε ε
ε ε 0

We have

A−1 = P−1D−1

=

 ε 0 ε
ε ε 0
0 ε ε

 ε 2 ε
ε ε 0
−3 ε ε

=

 ε 2 ε
ε ε 0
−3 ε ε

 .

14

Lets check:

A−1A =

 ε 2 ε
ε ε 0
−3 ε ε

 ε ε 3
−2 ε ε
ε 0 ε

=

 0 ε ε
ε 0 ε
ε ε 0

= I

Example 2.18 Not inversible matrix

Consider A =

[
2 −1
3 2

]
.

A−1A =

[
2 −1
3 2

]−1 [
2 −1
3 2

]
=

[
−2 −3
1 −2

] [
2 −1
3 2

]
=

[
0 −1
3 0

]
6= I

Definition 2.19 (max, +) matrix division
Let A ∈ Rn×nε and B ∈ Rn×nε .
If B is (max, +)–invertible then the (max, +) matrix division A by B
is defined as follows:

A�B = B−1A. (12)

Definition 2.20 Trace of a matrix
The trace of a matrix A ∈ Rn×nε is the sum of the entries on its main
diagonal and is denoted by tr(A). That is,

tr(A) =
n⊕
i=1

(A)ii. (13)

Equivalently, tr(A) is a maximal element from main diagonal.

15

Table 3: Functions to operate on matrices.

function short description
mp_zeros(n,m) n–by–m zeros matrix
mp_ones(n,m) n–by–m ones matrix
mp_eye(n,m) n–by–m identity matrix In
mp_add(A,B) addition of A and B A⊕B
mp_multi(A,B) multiplication of A by B A⊗B
mp_power(A,n) n–th power of A An

mp_inv(A) invertion of A A−1

mp_div(A,B) division of A by B B−1A
mp_trace(A) trace of A tr(A)

2.3 Connection with graph theory

There exists a close relation between the (max, +) algebra and graphs.
In this subsection we first give a short introduction to graph theory, and next
we give a graph–theoretic interpretation of some basic (max, +) operations
and concepts, which will be used later on. For the introduction to the graphs
we refer the reader to e.g. [Aldous and Wilson 2000].

Definition 2.21 graph
A graph G is defined as a pair (V, E), where V is a set of elements called
nodes (or vertices) and E is a set the elements called edges. Each edge
joints two nodes.

Definition 2.22 digraph
A directed graph (or shorter digraph) G is defined as a pair (V, E), where
V is a set of elements called nodes (or vertices) and E is a set the elements
which are ordered pairs of nodes called arcs.

Definition 2.23 weighted digraph
A digraph is called weighted digraph if there exists associated element
aij with each arcs (j, i) ∈ E . The quantity aij is called the weight of arc
(j, i).

Definition 2.24 initial and final node, predecessor and successor
Denote the number of nodes by n and number of the individual nodes
1, 2, . . . , n.
If a pair (i, j) ∈ E , then i is called initial node (or origin) of the arc
(i, j), and j the final node (or destination) of arc (i, j).
If a pair (i, j) ∈ E , then i is called predecessor of j and j is called

16

successor of i. The set of all predecessors of j is indicated by π(j).

Definition 2.25 path, circuit and acyclic digraph
A path ρ is a sequence of nodes (i1, i2, . . . , ip), p > 1, such that ij ∈
π(ij+1), j = 1, . . . , p− 1.
Equivalently, a path is a sequence of arcs which connects a sequence of
nodes.
A circuit is a path, in which the initial and final nodes coincide.
A digraph is acyclic if it does not contain circuits.

Definition 2.26 lenght and weight of a path
A length of a path (or circuit) |ρ|l is equal to the sum of the lengths of
the arcs of which it is composed.
A weight of a path (or circuits) |ρ|w is the sum of the weights of the
individual arcs.

Definition 2.27 connected and strongly connected digraph
A digraph is connected if its underlying graph is a connected graph (i.e.
there exists a path between each pair of vertices), and is disconnected
otherwise.
A digraph is strongly connected if there is a path between each pair of
vertices.

Fig. 1 shows a connected but not strongly connected digraph.

1 • 2 • •
3

4

2

3

2� �6

� �
?

-
	��

Figure 1: A (not strongly) connected digraph.

Definition 2.28 Precedence graph
The precedence graph G(A) of matrix A ∈ Rn×nε is a weighted digraph
with n nodes and arc (j, i) if and only if (A)ij 6= ε.

Theorem 2.29
Let A ∈ Rn×nε and let B be a matrix

B = A⊕A2 ⊕ · · · ⊕An, (14)

17

then G(A) is strongly connected if and only if each entry in B is greater
than ε.

The proof foolows straight from the standard version, we refer the reader to
e.g. [Aldous and Wilson 2000].

Definition 2.30 Maximum cycle mean
The maximum cycle mean of precedence graph G(A) is the maximum
of the average weight of circuits

λ = max
ρ

|ρ|w
|ρ|l

, (15)

where:
|ρ|l is the length and |ρ|w is the weight of the circuit.

It can be rewritten in (max, +) notation:

λ =
n⊕
j=1

tr(Aj)
1
j , (16)

where:
(Aj)ii — the maximum weight of all circuits of length j which pass
through node i,
tr(Aj) — maximum over all nodes.

a) b)

A =

 5 ε 5
ε 6 3

11 12 11

•
1

•
2

•
3

	�-

	�-
@
@@R

�
���

$�

%�

5

6

5

3

12

11

1111
	��

Figure 2: An exemplary matrix (a) and its precedence graph (b) with max-
imum cycle mean equals 11.

Theorem 2.31
[Karp 1978] a bit modified by [Gaubert and Scilab 1998].
If precedence graph of A is strongly connected (or if A irreducible), then

18

λ = max
16j6n

(An)ij 6=−∞

min
16k6n

(An)ij − (An−k)ij
k

. (17)

So, in the (max, +) notation

λ =
⊕
16j6n

(An)ij 6=ε

∨
16k6n

(
(An)ij

(An−k)ij

) 1
k

. (18)

where:
a ∨ b ≡ min(a, b).

A good bibliography on the maximal cycle mean problem, and a comparison
of Karp’s algorithm with other classical algorithms, can be found in [Dasdan
and Gupta 1998].

Table 4: Graph functions.

function short description
mp_is_pga(A) checks, if a precedence graph G(A) is acyclic
mp_is_pgc(A) checks, if a precedence graph G(A) is connected
mp_is_pgsc1(A) checks, if a precedence graph G(A)

is strongly connected (from definition 2.27)
mp_is_pgsc2(A) checks, if a precedence graph G(A)

is strongly connected (from theorem 2.29)
mp_mcm(A) maximum cycle mean of G(A) (from (16))
mp_mcm_fw(A) maximum cycle mean of G(A)

Floyd–Warshall algorithm [Floyd 1962]
mp_mcp_karp(A) maximum cycle mean of G(A)

Karp algorithm: 2.31

2.4 Linear equations

Some of the examples in this chapter are taken from [Gaubert and Scilab
1998].

2.4.1 Problem Ax = b

(max, +) algebra is equipped with the following natural order relation:

∀a, b ∈ Rε : a 4 b ⇐⇒ a⊕ b = b. (19)

19

Let us consider equation (20). Let A ∈ Rn×nε and b ∈ Rnε :

Ax = b. (20)

Generally (20) has no solution, but (21) always does.

Ax 4 b. (21)

We can try solve it via residuation [Blyth and Janowitz 1972]. Precisely, this
method solves (21).

Theorem 2.32 [Baccelli et al. 1992]
Given A ∈ Rn×nε and b ∈ Rnε , the greatest subsolution of (20) exists,
and is given by

(i� x)T = (i� b)TA, (22)

where i is (max, +)–algebraic identity vector with appropriate size.

Let solution of (22) denote as

x = (A\b). (23)

Equation (20) has a solution if and only if

A(A\b) = b. (24)

Table 5: Toolbox functions assigned to the problem Ax = b.

function short description
mp_solve_Axb(A,b) the greatest subsolution of Ax = b

2.4.2 Problem x = Ax⊕ b

Theorem 2.33 [Baccelli et al. 1992]
Let A ∈ Rn×nε , and b ∈ Rnε . The minimal column vector x ∈ Rnε , such
that

x = Ax⊕ b (25)

is given by

x = A?b. (26)

20

Definition 2.34 Star operator
The operator ? for square matrix A ∈ Rn×nε is defined by:

A? =
⊕
k∈N0

Ak (27)

where:

A0 = In, Ak = A⊗Ak−1,

N0 is the set of nonnegative integers.

We can interpret (A?)ij as the maximal weight of a path from i to j
of any lenght, in the G(A). A? is a priori defined in (Rε ∪ {+∞})n×n, but
the +∞ value is undesired in most application.

Theorem 2.35 [Gaubert 1997]
LetA ∈ Rn×nε , iff there are no circuits with positive weight in precedence
graph G(A), then

A? = A0 ⊕A1 ⊕ · · · ⊕An−1. (28)

Table 6: Toolbox functions assigned to the problem x = Ax⊕ b.

function short description
mp_star(A) (max, +) star operator A?

mp_solve_xAxb(A,b) the solution of x = Ax⊕ b x = A?b

2.4.3 Spectral problem Ax = λx

The most useful (max, +) practicable results are related to the spectral
problem (29).

Definition 2.36 The (max, +) spectral problem
The matrix A ∈ Rn×nε has an eigenvalue in the (max, +) algebra sense,
if there exist a real number λ ∈ R and a vector v ∈ Rn such that

Av = λv. (29)

The vector v is then called an eigenvector for the eigenvalue λ.

The theory is extremely similar to the well known Perron–Frobenius the-
ory (see e.g. [Bapat 1998]). Every square matrix with entries in Rε has
at least one eigenvalue. Unlike in conventional Perron–Frobenius theory, an

21

irreducible matrix can have several (non proportional) eigenvectors.

(max, +) algebraic eigenproblem has been studied in many publications
(see e.g. [Baccelli et al. 1992] and in particular [Braker 1993] for a power
algorithm). In some publications, authors allows components of vector v in
the eigenvalue problem to assume the value ε, with the exception of (max, +)
zero vector — a trivial solution of (29).

Determine an eigenvalue

Theorem 2.37 [Baccelli et al. 1992]
If A is irreducible, or equivalently if G(A) is strongly connected, there
exists one, and only one eigenvalue (but possibly several eigenvectors).
This eigenvalue is equal to the maximum cycle mean of G(A).

If G(A) is not strongly connected then we can find the maximum cycle
mean by determining the maximum cycle mean for each strong component
of G(A). The strong components can be found using algorithm presented in
[Tarjan 1972].

Lemma 2.38 [G.-J. Olsder, Roos, and van Egmond 1999]
A solution of eigenproblem (29) is feasible if and only if G(A) contains
a circuit.

Example 2.39 Eigenvalue of not irreducible matrix

• The following example shows the uniqueness of the eigenvalue when
G(A) is not connected:[

1 ε
ε 2

] [
0
ε

]
= 1

[
0
ε

]
=

[
1
ε

]
,

[
1 ε
ε 2

] [
ε
0

]
= 2

[
ε
0

]
=

[
ε
2

]
.

• In the following example G(A) is connected but not strongly connected,
and there are two eigenvalues:[

0 0
ε 1

] [
0
ε

]
= 0

[
0
ε

]
=

[
0
ε

]
,

[
0 0
ε 1

] [
0
1

]
= 1

[
0
1

]
=

[
1
2

]
.

22

We can also use an another way to obtain the eigenvalue. The starting
point is the equation of linear system (30), which describes the time evolution
of an autonomous DES (for more details see § 4):

x(k) = Ax(k − 1), (30)

where x ∈ Rnε and A ∈ Rn×nε .

Theorem 2.40
Given an initial vector x(0) (the initial state of the system), we say
that the system (30), after a number of steps, ends up in a periodic
behaviour, if there exists integers p, q with p > q > 0 and real number c
such that x(p) = x(q)⊕ c. Then the eigenvalue λ is given by

λ =
c

p− q
(in the conventional algebra). (31)

Example 2.41

Let x(0) =

[
0
0

]
and A =

[
3 7
2 4

]
then x(1) =

[
7
4

]
→ x(2) =[

11
9

]
→ x(3) =

[
16
13

]
. So, x(3)−x(1) =

[
9
9

]
. Hence λ =

9

3− 1
= 4.5.

Looking for eigenvectors: implemented algorithms

Algorithm 1 [G.-J. Olsder 1991]
Candidate eigenvector — first so-called power algorithm.
If we have p, q and c (see theorem 2.40), then the eigenvector is given by:

v =
1

p− q

p−q∑
j=1

x(q + j − 1) (in the conventional algebra). (32)

Note: This algorithm does not always give an eigenvector.

Example 2.42

Let x(0) =
[
0
0

]
and A =

[
3 7
2 4

]
. So p = 3, q = 1, c = 9.

Hence v =
1

3− 1

(
x(1) + x(2)

)
=

1

2

([7
4

]
+

[
11
9

])
=

[
9
6.5

]
.

Algorithm 2 [Braker and G.-J. Olsder 1993]
Extended alg. 1 — power algorithm.

23

1. Calculate a candidate for an eigenvector from (32);

2. If v is an eigenvector then stop, if not, go to step 3;

3. Define a new vector:

vi =

{
vi, if (A⊗ v)i = λ⊗ vi
ε, elsewhere

(33)

4. Restart algorithm with x(0) = v,
until for some r > 0, there holds x(r + 1) = λ⊗ x(r),
then x(r) is an eigenvector of A.

Example 2.43

Let A =

ε 3 ε 1
2 ε 1 ε
1 2 2 ε
ε ε 1 ε

, and x(0) =

0
ε
ε
ε

, so λ = 21
2 .

A result form alg. 2 is v =

5
41
2

5
31
2

.

It is easy to see that A⊗ v =

71
2

7
7
6

 6=

71
2

7
71
2

6

 = λ⊗ v.

The new vector v =

5
41
2
ε
31
2

 = x(0), and then

x(0) =

5
41
2
ε
31
2

→ x(1) =

71
2

7
61
2
ε

→ x(2) =

10
91
2

9
71
2

→ x(3) =

121

2
12
111

2
10

 = λ⊗x(2).

Hence, a result of alg. 2 is

10
91
2

9
71
2

.
Algorithm 3 [G.-J. Olsder, Roos, and van Egmond 1999]
With adapted Floyd–Warshall procedure [Ahuja, Magnanti, and Orlin 1993].
Let G(A) = (V, E) be a precedence graph of A, J denotes the all–one matrix.

24

1. We start by choosing a lower bound µ for λ.
For this we can take µ = maxi∈V(A)ii if the diagonal of A is not void;
otherwise we may use µ = mini,j∈E(A)ij , because the average weight
of a circuit cannot be smaller.

2. Then we check (see below) whether there exists a circuit C with positive
weight with respect to A − µJ. If this is the case we increase µ to
the average weight of C and restart the procedure. This is repeated
until there are no circuits having positive weight with respect to A′ =
A− µJ. It implies that λ = µ.

The (adapted) Floyd–Warshall procedure to detect the existence of
circuits having positive weight goes as follows. Starting with A0 = A
we successively construct matrices A1,A2, ...,An by defining

(Ak)ij = max
(
(Ak−1)ij , (Ak−1)ik + (Ak−1)kj

)
, k = 1, 2, ..., n.

(34)

If we apply this procedure to the matrix A′ = A− µJ and

• if there exists no positive circuits with respect to A′ = A − µJ
(i.e. when µ = λ), then the nodes lying on a critical circuit are
exactly those i for which (A′)ii = 0;

• if there exists a positive circuits with respect to A′ (i.e., when
µ < λ), the existence of such a circuit is detected by the Floyd–
Warshall procedure as soon as a diagonal entry in one of the
matrices A′k becomes positive. This circuit, C say, can be found
by backtracking the Floyd–Warshall procedure, starting from the
node corresponding to the positive diagonal entry. We replace
µ by the average weight of C with respect to A and restart the
Floyd–Warshall procedure on the updated matrix A− µJ.

3. The eigenvectors can be immediately obtained from the final matrix
A′n generated by the Floyd–Warshall procedure. This matrix reveals
all critical circuits and all nodes lying on critical circuits; these are
precisely the nodes whose columns in A′n have a zero on the diagonal.
We denote the critical circuits by Ck where k runs through an index
set K whose cardinality is equal to the number of critical circuits. For
each k ∈ K we choose a node rk on Ck. We call rk the reference node
for the critical circuit Ck. Moreover, for each node i we define

x
(k)
i = maximum weight of all paths in G(A′) from rk to i, i ∈ V.

If there exists no path from rk to i then the corresponding entry of
x(k) will be taken ε. Note that x(k) is just the column in the matrix
A′n corresponding to the node rk.

25

Now let L be any nonempty subset of K. For any such subset we define

xLi = max{x(k)i : k ∈ L}, i ∈ V. (35)

If L is such that the vector xL is finite then xL is a solution of the
eigenvalue problem (29).

Example 2.44
Consider the following matrix:

A =

4 ε ε ε ε 4
2 5 1 ε ε ε
ε ε ε 6 ε ε
ε ε 8 3 ε ε
9 ε ε ε ε ε
ε ε ε ε 8 3

 .

As a first guess for the maximum cycle mean of G(A) we take the maximum
entry on the diagonal of A, thus µ = (A)22 = 5. Next we apply the Floyd–
Warshall procedure to the matrix A − 5J. After three iterations we find
a positive entry on the diagonal:

(A− 5J)3 =

−1 ε ε ε ε −1
−3 0 −4 −3 ε −4
ε ε ε 1 ε ε
ε ε 3 4 ε ε
4 ε ε ε ε 3
ε ε ε ε 3 −2

 .

There is a circuit containing node 4 of weight 4. Indeed we have a circuit
4→ 3→ 4 which has circuit mean 7 with respect toA. We therefore proceed
with µ = 7 and repeat the Floyd–Warshall procedure to the matrix A− 7J.
This time all diagonal entries remain nonpositive:

(A− 7J)6 =

0 ε ε ε −2 −3
−5 −2 −6 −7 −7 −8
ε ε 0 −1 ε ε
ε ε 1 0 ε ε
2 ε ε ε 0 −1
3 ε ε ε 1 0

 .

The zero diagonal entries of (A− 7J)6 give us the critical nodes.
It turns out that G(A) has two critical circuits: 4→ 3→ 4 and 1→ 5→ 6→

26

1 with µ = 7. Application of algorithm yields the following six eigenvectors
(x{6,4} is a linear combination of x{5,3}):

x{1,3} =

0
−5
0
1
2
3

 , x{5,3} =

−2
−6
0
1
0
1

 , x{6,3} =

−3
−6
0
1
−1
0

 ,

x{1,4} =

0
−5
−1
0
2
3

 , x{5,4} =

−2
−7
−1
0
0
1

 , x{6,4} =

−3
−7
−1
0
−1
0

 .

Algorithm 4 [Subiono and van der Woude 2000]
Extended alg. 1 and 2.

1. Calculate a candidate for an eigenvector from (32);

2. If v is an eigenvector then stop, if not, go to step 3;

3. Restart algorithm with x(0) = v,
until for some r > 0, there holds x(r + 1) = λ⊗ x(r),
then x(r) is an eigenvector of A.

Example 2.45

Let A =

ε 3 ε 1
2 ε 1 ε
1 2 2 ε
ε ε 1 ε

 , and an initial state x(0) =

0
ε
ε
ε

, so λ = 21
2 .

A result form alg. 1 is v =

5
41
2

5
31
2

 .

We can see that A⊗ v =

71
2

7
7
6

 6=

71
2

7
71
2

6

 = λ⊗ v.

27

So, the new vector x(0) = v, and:

x(0) =

5
41
2

5
31
2

 → x(1) =

71
2

7
7
6

 → x(2) =

10
91
2

9
8

 →

→ x(3) =

121

2
12
111

2
10

 → x(4) =

15
141

2
14
121

2

 = λ⊗ x(3).

Hence, a result of alg. 4 is

121

2
12
111

2
10

 .

Algorithm 5 [Subiono and van der Woude 2000]
If we have p, q and c (see theorem 2.40), then the eigenvector is given by:

v =

p−q⊕
j=1

(λp−q−j ⊗ x(q + j − 1)). (36)

Example 2.46

Let x(0) =
[
0
0

]
and A =

[
3 7
2 4

]
. So p = 3, q = 1, c = 9 and λ = 4.5.

Hence v = λ1x(1)⊕ λ0x(2) = 4.5

[
7
4

]
⊕ 1

[
11
9

]
=

[
11.5
9

]
.

28

Table 7: Toolbox functions assign to the spectral problem Av = λv.

function short description
mp_is_pga checks if A has got any eigenvalue
mp_is_pgsc1 checks if A has got exactly one eigenvalue
mp_is_pgsc2 checks if A has got exactly one eigenvalue
mp_is_egv1 checks if v is an eigenvector of A
mp_is_egv2 checks if v is an eigenvector of A
mp_pqc calculate components of an eigenvalue of A, from (31)
mp_egv_pqc eigenvalue of A, from (31)
mp_mcm eigenvalue of A, from (16)
mp_mcm_fw eigenvalue of A - Floyd–Warshall algorithm
mp_mx_fw final Floyd–Warshall matrix of A
mp_ev_fw eigenvectors of A - Floyd–Warshall algorithm
mp_mcm_karp eigenvalue of A - Karp algorithm
mp_egv_o91 eigenvalue and eigenvector of A,

[G.-J. Olsder 1991]
mp_egv_bo93 eigenvalue and eigenvector of A,

[Braker and G.-J. Olsder 1993]
mp_egv_sw001 eigenvalue and eigenvector of A,

[Subiono and van der Woude 2000]
mp_egv_sw002 eigenvalue and eigenvector of A,

[Subiono and van der Woude 2000]

29

3 A bit of the (min, +) algebra

Definition 3.1 The (min, +) algebra
(min, +) algebra is defined as follows:

• Rε = R ∪ {+∞}, where R is the field of real numbers;

• ∀a, b ∈ Rε : a⊕ b ≡ min(a, b);

• ∀a, b ∈ Rε : a⊗ b ≡ a+ b.

The algebraic structure Rmin = (Rε,⊕,⊗), is called the min-plus algebra.
The reason for not distinguishing between the maximum in (max, +) and
the minimum in (min, +) operations is that Rmax and Rmin are isomorphic
algebraic structures and such notations are frequently used in literature. But
in this paper to avoid any ambiguity we will use different symbols:

• a ∨ b ≡ min(a, b);

• a ∧ b ≡ a+ b.

We decide to use different symbol for + in (max, +) and in (min, +), because

−∞⊗∞ = −∞ 6= −∞∧∞ =∞. (37)

The (max, +) and (min, +) algebra together comprise the minimax algebra
[Cuninghame–Green 1979].

The basic scalar, vector and matrix operations in the (min, +) are formed
analogously with the (max, +), and they are ommited here.

Definition 3.2 Plus operator
The operator + for square matrix A ∈ Rn×nε is defined by:

A+ =
∨
k∈N

Ak, (38)

where N is the set of natural numbers.

It does mean, that

A+ ∨A0 = A?. (39)

The matrix A+ sometimes referred as the shortest path matrix.

30

Example 3.3 Shortest path problem
Let us consider a shortest path problem for digraph shown on Fig. 3.

•
1

•
2

•
3

•
5

•
4

•
6

�
�
�
��

5

@
@
@
@R

3

�
�
�
��

4

@
@
@
@R

1

�
�
�
��

5

-4

-2

��
��

��
��

��
��

��1

8

@
@
@
@R

2

Figure 3: An exemplary digraph.

A =

ε ε ε ε ε ε
5 ε ε ε ε ε
3 ε ε ε ε ε
ε 2 ε ε 5 ε
ε 1 4 ε ε ε
ε ε 8 2 4 ε

 ,

so,

A+ =

ε ε ε ε ε ε
5 ε ε ε ε ε
3 ε ε ε ε ε
7 2 9 ε 5 ε
6 1 4 ε ε ε
9 4 8 2 4 ε

 .

Hence, the shortest path e.g. from node 1 to node 6 is 9 — see (A+)6,1.

31

Table 8: (min, +) functions.

function short description
mpm_zero neutral element for opertion ∨
mpm_zeros zeros matrix, vector or scalar
mpm_one neutral element for opertion ∧
mpm_ones ones matrix (vector / scalar)
mpm_eye identity matrix In
mpm_add addition a ∨ b, A ∨B
mpm_multi multiplication a ∧ b, A ∧B
mpm_plus(A) plus operator of A A+ = A1∨A2∨ . . .
mpm_star(A) star operator of A A? = A0 ∨A+

mpm_inv(A) invertion of A A−1

mpm_div division a/b, B−1A
mpm_power n–th power an, An

32

4 State space description of DES

4.1 Introduction

Probably the most well–known equation in the theory of difference equa-
tions is

x(t) = Ax(t− 1), t = 1, 2, . . . (40)

The vector x ∈ Rn represents the state of the underlying model and this
state evolves in time according to this equation. If an initial condition

x(0) = x0 (41)

is given, then the whole future evolution of (40) is determined. Equation (40)
rewritten in (max, +) notation (x ∈ Rnε , A ∈ Rn×nε , k ∈ N0) is given by:

x(k) = A⊗ x(k − 1). (42)

Where k is a cycle index.

Example 4.1 An introductory example to state space description

As an example, we take matrix A ∈ R2×2
ε . Let A =

[
3 7
2 4

]
and the initial

condition x0 =

[
1
0

]
. The time evolution of (65) becomes:

x(0) =

[
1
0

]
→ x(1) =

[
7
4

]
→ x(2) =

[
11
9

]
→ x(3) =

[
16
13

]
. . .

State space 1–order model with dependence on inputs and outputs is an
extension of (65):

∀k ∈ N :

x(k) = A(k)x(k − 1)⊕B(k)u(k), (43)
y(k) = C(k)x(k)⊕D(k)u(k). (44)

x ∈ Rnε is called state vector,
u ∈ Rrε is called input vector or control vector of the system,
y ∈ Rmε is called output vector of the system,
A ∈ Rn×nε is called system matrix,
B ∈ Rn×rε is called input matrix,
C ∈ Rm×nε is called output matrix,

33

D ∈ Rm×rε is called feedthrough (or feedforward) matrix. In general case, for
N–order time–invariant system is described by:

x(k) =

N⊕
i=0

Aix(k − i)⊕
N−1⊕
i=0

Biu(k − i), (45)

y(k) =

N−1⊕
i=0

(
Cix(k − i)⊕Diu(k − i)

)
. (46)

When we remove the x(k) on the right–side of (45) (if A?
0 converge), and if

we also define a new state vector, an augmented input vector and matrices:

x̃(k) =
[
x(k)x(k − 1)· · ·x(k −N + 1)

]T
, (47)

ũ(k) =
[
u(k)u(k − 1)· · ·u(k −N + 1)

]T
, (48)

A =

A?

0A1 A
?
0A2 A?

0AN

I ε ε
ε
...

. . .
ε . . . ε I ε

 , (49)

B =

A?

0B0 . . . A?
0BN−1

ε . . . ε
...

...
ε . . . ε

 , (50)

C =
[
C0 . . . CN−1

]
, (51)

D =
[
D0 . . . DN−1

]
, (52)

then eqns. (45), (46) can be written as time–invariant, 1–order model of
eqns. (43), (44) where I and ε are appropriately sized (max,+)-algebraic
identity and zero matrices, respectively, and

∀k ∈ N : A(k) = A, B(k) = B, C(k) = C, D(k) = D.

Table 9: Toolbox functions for state space models.

function short description
mp_system state fo an autonomous linear max–plus system

34

4.2 State space description of timed event graph

Timed event graphs (TEGs) are (timed) Petri-nets [Murata 1989], which
are convenient to model (timed) synchronisation problems. They are char-
acterised by the fact that every place has exactly one predecessor transition
and one successor transition. Time constraints are modelled by so–called
holding times, representing the minimum amount of time a token has to
spend in a place before it can contribute to enable a downstream transition.
Let xi(k) denote the time instant, when an internal transition i can fire for
the kth time, and x(k) = (xi(k)) the corresponding vector of firing times.
Similarly, let ui(k) denote the firing times of input transitions which can be
triggered by the outside world, and yi(k) the firing times of output transitions
which carry information to the outside world. It is then straightforward, to
read the (max, +) equations (45)–(46) from the timed event graph.

Example 4.2 An example of a TEG and its (max, +) description
Let us consider an exemplary timed event graph depicted on Fig. 4 and its
state space representaion in the (max, +) domain.

• •

•

u1 u2

y

2 0

6 6

3

x1 5 x2 6

x3 3

Figure 4: An exemplary TEG.

x(k) = A0x(k)⊕A1x(k − 1)⊕B0u(k)

= Ax(k − 1)⊕Bu(k)

y(k) = Cx(k),

where:

A0 =

 ε ε ε
ε ε ε
6 6 ε

 ,A1 =

 5 ε ε
ε 6 ε
ε ε 3

 ,B0 =

 2
0
ε

 ,C =
[
ε ε 3

]
,

35

A = A?
0A1 =

 5 ε ε
ε 6 ε
11 12 3

 ,B = A?
0B0 =

 2
0
8

 .
The Petri Net Toolbox2 is able to directly derive the (max, +) state

space representation in form (45)–(46) from topology of a TEG.

4.3 Analysis of DES

The periodical behaviour of closed DESs, i.e. involving a set of repeatedly
performed activities, can be totally characterised by solving an eigenvalue
and eigenvector equation. Additionally, in the toolbox there is a set of func-
tions for graphical illustration of DESs behaviour.

4.3.1 Graphical representation – Gantt charts

For generating Gantt charts3 we defined two functions — see tab. 10

Table 10: Gantt charts.

function short description
mp_ganttr Gantt chart of resources occupation in time
mp_ganttx Gantt chart of a state vector evolution in time

The Gantt charts can be saved as encapsulated postscript using the following
expression:
>> print -depsc2 ’fileName.eps’
or as a PDF:
>> print -dpdf ’fileName.pdf’

4.4 Examples of DES

In this part, we focus on two examples from domain (flexible) manufac-
turing.

4.4.1 A simple production system

Let consider a simple production system, presented in Fig. 6 [De Schutter
1996]. This production system consists of 3 processing units: M1, M2 and
M3. A raw material is fed to M1 and M2, where it is processed and sent to

2More information under http://www.ac.tuiasi.ro/pntool.
3At present, graphical functions work under Matlabronly.

36

http://www.ac.tuiasi.ro/pntool

Figure 5: An exemplary Gantt chart generated by function mp_ganttx.

M3, where assembly takes place. The processing times for M1, M2 and M3

are respectively d1 = 5, d2 = 6 and d3 = 3 time units. We assume that it
takes t1 = 2 time units for the raw material to get from the input source to
M1 and that it takes t3 = 1 time unit for the finished products of processing
unit M1 to reach M3. The other transportation times (t2, t4 and t5) are
assumed to be negligible. At the input of the system and between the pro-
cessing units there are buffers with a capacity that is large enough to ensure
that no over flow will occur. Initially all the buffers are empty and none
of the processing units contains raw material or intermediate products. A
processing unit can start working on a new product only after it has finished
processing the previous one. We assume that each processing unit starts
working as soon as all parts are available.

Figure 6: A simple production system.

37

We define:

• u(k) — time instant at which raw material is feed to the system for
the kth time,

• xi(k) — time instant at which the ith processing unit starts working
for the kth time,

• y(k) — time instant at which the kth finished product leaves the sys-
tem.

Let us now determine the time instant at which processing unit M1 starts
working for the kth time. If we feed raw material to the system for the kth
time, then this raw material is available at the input of processing unit M1

at time t = u(k) + 2. However, M1 can start working on the new batch of
raw material only as soon as it has finished processing the previous, i.e. the
(k − 1)st batch. Since the processing time on M1 is d1 = 5 time units, the
(k−1)st intermediate product will leave M1 at time t = x1(k−1)+5. Since
M1 starts working on a batch of raw material as soon as the raw material
is available and the current batch has left the processing unit, this implies
that we have

∀k ∈ N0 : x1(k) = max
(
x1(k − 1) + 5, u(k) + 2

)
. (53)

The condition that initially processing unitM1 is empty and idle corresponds
to the initial condition x1(0) = ε and hence it follows from equation (53)
that x1(1) = u(1) + 2, i.e. the first batch of raw material that is fed to the
system will be processed immediately (after a delay of 2 time units needed
to transport the raw material from the input to M1).
Using a similar reasoning we find the following expressions for the time in-
stants at which M2 and M3 start working for the kth time and for the time
instant at which the kth finished product leaves the system:

∀k ∈ N0 :

x2(k) = max
(
x2(k − 1) + 6, u(k) + 0

)
,

x3(k) = max
(
x1(k) + 5 + 1, x2(k) + 6 + 0, x3(k − 1) + 3

)
= max

(
x1(k − 1) + 11, x2(k − 1) + 12, x3(k − 1) + 3, u(k) + 8

)
,

y(k) = x3(k) + 3 + 0.

(54)

The condition that initially all buffers are empty corresponds to the initial
condition

x1(0) = x2(0) = x3(0) = ε. (55)

38

Let us now rewrite the evolution equations of the production system using
the (max, +) notation:

x1(k) = 5x1(k − 1)⊕ 2u(k),

x2(k) = 6x2(k − 1)⊕ u(k),
x3(k) = 11x1(k − 1)⊕ 12x2(k − 1)⊕ 3x3(k − 1)⊕ 8u(k),

y(k) = 3x3(k),

(56)

in matrix notation:

x(k) = Ax(k − 1)⊕Bu(k)

=

 5 ε ε
ε 6 ε
11 12 3

x(k − 1)⊕

 2
0
8

u(k),

y(k) = Cx(k)

=
[
ε ε 3

]
x(k),

(57)

where x(k) =
[
x1(k) x2(k) x3(k)

]T .
Now, we assume that after a machine has finished a sequence of products

it starts with the next sequence. So, we have u(k) = y(k − 1) for k > 0.
Hence, we obtain:

x(k) = Ax(k − 1)⊕Bu(k)

= Ax(k − 1)⊕By(k − 1)

= Ax(k − 1)⊕BCx(k − 1)

=
(
A⊕BC

)
x(k − 1)

= Âx(k − 1)

(58)

where Â = A⊕BC =

 5 ε 5
ε 6 3
11 12 11

 .
We can see, that this cyclic production system can also be described by

a model of the form (43), but now the model is autonomous i.e. there is no
external input that controls the behaviour of the system. This example is
included in file: exSimpleProduction.m.
Exemplary results for model (57) with u(k) = 0 = constant:

1 % definition of matrices
2 >> A = [5 mp_zero mp_zero
3 mp_zero 6 mp_zero
4 11 12 3];
5 >> B = [2 0 8]';
6 >> C = [mp_zero mp_zero 3];

39

7
8 % determine initial conditions
9 >> x0 = mp_zeros(3, 1);

10 >> u0 = 0;
11
12 % calculate a sequence of state vector
13 >> X(:, 1)= mp_add(mp_multi(A, x0), mp_multi(B, u0));
14 >> Y(1) = mp_multi(C, X(:, 1));
15 >> for i = 2:10
16 X(:, i) = mp_add(mp_multi(A, X(:, i−1)), mp_multi(B, u0));
17 Y(i) = mp_multi(C, X(:, i));
18 end
19 >> X, Y
20 X =
21 2 7 12 17 22 27 32 37 42 47
22 0 6 12 18 24 30 36 42 48 54
23 8 13 18 24 30 36 42 48 54 60
24 Y =
25 11 16 21 27 33 39 45 51 57 63

X is a sequence of state vector from x(1) to x(10), Y is an output value for
appropriate state vector.
Results for model (57) with u(0) = 0 and then u(k) = y(k − 1):

26 % calculate a sequence of state vector
27 >> X(:, 1)= mp_add(mp_multi(A, x0), mp_multi(B, u0));
28 >> Y(1) = mp_multi(C, X(:, 1));
29 >> for i = 2:10
30 X(:, i) = mp_add(mp_multi(A, X(:,i−1)), mp_multi(B, Y(i−1)));
31 Y(i) = mp_multi(C, X(:, i));
32 end
33 >> X, Y
34 X =
35 2 13 24 35 46 57 68 79 90 101
36 0 11 22 33 44 55 66 77 88 99
37 8 19 30 41 52 63 74 85 96 107
38 Y =
39 11 22 33 44 55 66 77 88 99 110

4.4.2 Multi-product manufacturing system

The idea for this example has been taken from [Baccelli et al. 1992].
Consider a manufacturing system that consists of three machines (M1, M2

and M3). In this manufacturing system three different types of parts (P1,
P2 and P3) are produced according to a certain product mix. The routes
followed by the various types of parts are depicted in Fig. 7.
Parts of type P1 first visit machine M2 and then go to M3. Parts of type P2

40

Figure 7: The routing of the various types of parts along the machines.

enter the system via machine M1, then they go to machine M2 and finally
leave the system through machine M3. Parts of type P3 first visit machine
M1 and then go to M2. It is assumed that:

• Parts are carried around on pallets. There is one pallet available for
each type of part.

• It is assumed that the transportation times are negligible and that
there are no set-up times on the machines when they switch from one
part type to another.

• The sequencing of the various parts on the machines is known: on
machine M1 it is (P2, P3), i.e. the machine first processes a part of
type P2 and then a part of type P3, on machine M2 the sequence is
(P1, P2, P3), and (P1, P2) on machine M3. We will call these sequences
local dispatching rules and we will describe them as σ (i.e. σ1 for the
sequence on M1, σ2 for the sequence on M2, and σ3 for M3).

The information about the sequencing and the duration of the various ac-
tivities (processing times) is shown in Fig. 8. In this figure, the activities
are represented by ordered pairs of the form (Pi,Mj) meaning that a part
of type Pi is processed on machine Mj . The arcs represent the precedence
constraints between activities. At the bottom right of each activity we have
indicated its duration, e.g. (P1,M2) (activity 3) has duration d3 = 3.

In order to simplify the process of deriving the evolution equations of this
system, we shall first look at what happens in one cycle of the production
process. We define:

• ui(k) — time instant at which machine Mi is available for the first
activity that should be performed on it in the kth production cycle for
i = 1, 2, 3;

• uj(k) — time instant at which the raw material for a part of type Pj−3
is available in the kth production cycle for j = 4, 5, 6;

• xi(k) — time instant at which activity i starts in the kth production
cycle for i = 1, 2, . . . , 7;

41

Figure 8: The sequence and the duration of the various activities.

• yi(k) — time instant at which machine Mi has finished processing the
last part of the kth production cycle that should be processed on it for
i = 1, 2, 3;

• yj(k) — time instant at which the finished product of type Pj−3 of the
kth production cycle has been completed for j = 4, 5, 6.

We have the following evolution equations:

x1(k) = 5x2(k − 1)⊕ 3x7(k − 1)⊕ u1(k)⊕ u5(k),
x2(k) = 1x1(k)⊕ 3x5(k − 1)⊕ u6(k), (59)

...

or, more compactly:

x(k) = A0x(k)⊕A1x(k − 1)⊕B0u(k),

= Ax(k − 1)⊕Bu(k), (60)

where A = A∗0A1 and B = A∗0B0.

In the cyclic (closed) systems, it is advisable to introduce a matrix K ∈
Rr×mε , to describe the dynamics of restarting the system for the next cycle:

u(k) = Ky(k − 1). (61)

42

Hence:

x(k) = Ax(k − 1)⊕BKy(k − 1), (62)
= Ax(k − 1)⊕BKCx(k − 1), (63)
= (A⊕BKC)x(k − 1), (64)
= Âx(k − 1). (65)

So, we obtain an autonomous model.

In the steady–state, the difference in the same state variables of two subse-
quent cycles is (in the conventional algebra):

x(k) = x(k − 1) + T, (66)

or in (max, +):

x(k) = Tx(k − 1), (67)

where T is a cycle time.
Hence, from (65) and (67):

Ax(k − 1) = Tx(k − 1), (68)

where T is a (max, +) eigenvalue of A.

An exemplary analysis of the considered system based on the Max–Plus
Algebra Toolbox is shown below. It provides cycle time and consecutive
states (x(k)) of the system. It is assumed that x(0) = [ε]7×1, i.e. all machines
are idle in the beginning, and u(1) = [e]6×1, i.e. all machines can be started
without delay. This example is included in files exMultiProduct.m and
exGanttr.m.

1 % operation times
2 >> d = [1 5 3 2 3 4 3];
3
4 % matrices definition
5 >> A0 = mp_zeros(7);
6 >> A0(2,1) = d(1); A0(4,1) = d(1); A0(4,3) = d(3); A0(5,2) = d(2);
7 >> A0(5,4) = d(4); A0(6,3) = d(3); A0(7,4) = d(4); A0(7,6) = d(6);
8
9 >> A1 = mp_zeros(7);

10 >> A1(1,2) = d(2); A1(1,7) = d(7); A1(2,5) = d(5);
11 >> A1(3,5) = d(5); A1(3,6) = d(6); A1(6,7) = d(7);
12
13 >> B0 = mp_zeros(7,6);
14 >> B0(1,1) = mp_one; B0(1,5) = mp_one; B0(2,6) = mp_one;
15 >> B0(3,2) = mp_one; B0(3,4) = mp_one; B0(6,3) = mp_one;
16

43

17 >> C = mp_zeros(6,7);
18 >> C(1,2) = d(2); C(2,3) = d(3); C(3,7) = d(7);
19 >> C(4,6) = d(6); C(5,7) = d(7); C(6,5) = d(5);
20
21 >> K = mp_eye(6);
22
23 % create the matrices A=(A0^*A1) and B=(A0^*B0)
24 >> A = mp_multi(mp_star(A0), A1);
25 >> B = mp_multi(mp_star(A0), B0);
26
27 % create matrix M = (A \oplus BKC)
28 >> M = mp_add(A, mp_multi(B, mp_multi(K, C)));
29
30 % determine initial conditions
31 x0 = mp_zeros(7, 1);
32 u1 = mp_ones(6, 1);
33
34 % calculate a sequence of a state vector
35 >> X(:, 1) = mp_add(mp_multi(A, x0), mp_multi(B, u1));
36 >> for i = 2:10
37 X(:, i) = mp_multi(M, X(:, i−1));
38 end
39 >> X
40 X =
41 0 10 19 29 38 48 57 67 76 86
42 1 11 20 30 39 49 58 68 77 87
43 0 9 19 28 38 47 57 66 76 85
44 3 12 22 31 41 50 60 69 79 88
45 6 16 25 35 44 54 63 73 82 92
46 3 12 22 31 41 50 60 69 79 88
47 7 16 26 35 45 54 64 73 83 92
48
49 % calculate a sequence of an output vector
50 >> Y = mp_multi(C, X)
51 Y =
52 6 16 25 35 44 54 63 73 82 92
53 9 19 28 38 47 57 66 76 85 95
54 10 19 29 38 48 57 67 76 86 95
55 7 16 26 35 45 54 64 73 83 92
56 10 19 29 38 48 57 67 76 86 95
57 9 19 28 38 47 57 66 76 85 95
58
59 % cycle time
60 >> lambda = mp_mcm(M)
61 lambda = 9.5000
62
63 % does the system start in steady−state?
64 >> mp_isegv(M, X(:,1), lambda)
65 ans = 0

44

66
67 % this means NO, so, let us calculate new x0 for start in steady state
68 >> x0 = mp_egv1(M, mp_ones(7,1))
69 x0 =
70 14.5000
71 15.5000
72 14.0000
73 17.0000
74 20.5000
75 17.0000
76 21.0000
77
78 % let min(x0)==0
79 >> x0 = x0 − min(x0);
80
81 % calculate a new sequence of a state vector
82 >> X(:, 1) = x0;
83 >> for i = 2:10
84 X(:, i) = mp_multi(M, X(:, i−1));
85 end
86
87 >> X
88 X =
89 0.50 10.00 19.50 29.00 38.50 48.00 57.50 67.00 76.50 86.00
90 1.50 11.00 20.50 30.00 39.50 49.00 58.50 68.00 77.50 87.00
91 0 9.50 19.00 28.50 38.00 47.50 57.00 66.50 76.00 85.50
92 3.00 12.50 22.00 31.50 41.00 50.50 60.00 69.50 79.00 88.50
93 6.50 16.00 25.50 35.00 44.50 54.00 63.50 73.00 82.50 92.00
94 3.00 12.50 22.00 31.50 41.00 50.50 60.00 69.50 79.00 88.50
95 7.00 16.50 26.00 35.50 45.00 54.50 64.00 73.50 83.00 92.50
96
97 % calculate others preformance indices
98 % resources utilisation level (for M1, M2, M3 respectively):
99 >> ro = [d(1)+d(2) d(3)+d(4)+d(5) d(6)+d(7)] / lambda

100 ro =
101 0.6316 0.8421 0.7368
102
103 % processes execution level (P1, P2, P3):
104 >> eta = [d(3)+d(6) d(1)+d(4)+d(7) d(2)+d(5)] / lambda
105 eta =
106 0.7368 0.6316 0.8421

45

Figure 9: A usage of machines in time, the Gantt chart generated by function
mp_ganttr.

46

5 Miscellaneous functions and data structures

5.1 Functions

Table 11: Miscellaneous functions.

function short description
mp_mxconv matrix conversion from the (max, +) to the

(min, +) and vice versa
mp_mx2latex matrix (or vector) conversion from the (max, +)

to the LATEX
mpm_mx2latex matrix (or vector) conversion from the (min, +)

to the LATEX

5.2 Data structures

Definition 5.1 resources–state–vector matrix MPX_Rsv
Let us define a matrix MPX_Rsv of resources–state–vector connection,
MPX_Rsv ∈ Np×q0 , where p is a number of resources in the system, q
is a maximal amount of the state–vector entries, which describe one
resource, i.e. the i–th row define i–th resource, entries of this row are
numbers of entries of the state–vector which are described this resource.

Example 5.2
Let us consider an example from § 4.4.2.
There are 3 resources M1,M2 and M3. Resource M1 is described by states
x1, x2, M2 by x3, x4, x5, and M3 by x6, x7. So

MPX_Rsv =

 M1 = {x1, x2}
M2 = {x3, x4, x5}
M3 = {x6, x7}

 =

 1 2 0
3 4 5
6 7 0

 .
Rows 1 and 3 have 2 elements, the row 2 has 3 elements, thus we have to
fill missing element by 0 to obtain the same length of all rows (add zeros in
rows 1 and 3).
See function mp_ganttr or example exGanttr.m for details.

47

6 Toolbox function reference

All functions described below are listed in alphabetical order.

mp_add

(max, +) addition of scalars, vectors or matrices

Syntax
y = mp_add(n, m)

Description
y = n⊕ m

• If n and m are scalars, result is a (max, +) sum of n and m.

• If n (or m) is scalar and m (or n) is vector, result is a vector the
same size as m (or n) where for every entries is (max, +) added n
(or m).

• If n (or m) is scalar and m (or n) is matrix, result is a matrix the
same size as m (or n) where for every entries is (max, +) added n
(or m).

• If n and m are this same size matrices, result is an array the same
size as n (and m) with the entries equal to (max, +) addition
elements from n and m.

Example

1 >> mp_add(−5, 7)

2 ans =

3 7

4
5 >> mp_add(3, [mp_zero 4])

6 ans =

7 3 4

8
9 >> A = [1 6 8 ; 3 −Inf 4], B = [2 5 −Inf ; 3 1 3]

10 A =

11 1 6 8

12 3 −Inf 4

13

48

14 B =

15 2 5 −Inf
16 3 1 3

17
18 >> mp_add(A, B)

19 ans =

20 2 6 8

21 3 1 4

See also
mp_multi, mp_one, mp_ones, mp_zero, mp_zeros

mp_conv

scalar, vector or matrix conversion from the (max, +) to the (min, +)
and vice versa

Syntax
Z = mp_conv(X)

Description
Function exchanges all∞ and −∞ to −∞ and∞ respectively. Entries
with other values are not changing.

Example

1 >> A = [0 3 Inf 1

2 1 2 2 −Inf
3 −Inf Inf 1 0];

4
5 >> mp_conv(A)

6 ans =

7 0 3 −Inf 1

8 1 2 2 Inf

9 Inf −Inf 1 0

49

mp_div

(max, +) division

Syntax
Z = mp_div(A, B)
[Z, err] = mp_div(A, B)

Description
Z = A� B

• If A is a scalar
– if B is a scalar, result is a scalar: (max, +) division of A by B;
– if B is a vector (or matrix), result is a vector (or a matrix)

where every entries are: A divided by apropriate entry of B.
• If A is a vector (or a matrix)

– if B is a scalar, result is a vector (or a matrix) the same size
as A where every entries of A are (max, +) divided by B;

– if B is a vector (or a matrix) the same size as A: the result is
(max, +) division A by B, i.e. mp_multi(mp_inv(B), A), and
when B is (max, +)-invertable err = 0, otherwise err = 1;

– if B is a vector (or a matrix) different size than A — operation
is not defined.

• Division by (max, +) zero (-Inf) is not defined - and returns NaN.

Example

1 >> mp_div(3, mp_one)

2 ans =

3 3

4
5 >> mp_div(3, 3)

6 ans =

7 0

8
9 >> mp_div(3, mp_zero)

10 ans =

11 NaN

12
13 >> mp_div(3, [mp_zero 7 mp_one])

14 ans =

15 NaN −4 3

50

16
17 >> mp_div([mp_zero 7 mp_one], 3)

18 ans =

19 −Inf 4 −3

(max, +) division for square matrices:

1 >> A = [mp_zero 1 mp_zero;

2 2 mp_zero mp_zero;

3 mp_zero mp_zero 3];

4 >> B = [3 mp_zero mp_zero;

5 mp_zero mp_zero 4;

6 mp_zero 5 mp_zero];

7 >> [C, err] = mp_div(A, B)

8 C =

9 −Inf −2 −Inf
10 −Inf −Inf −2
11 −2 −Inf −Inf
12
13 err =

14 0

15
16 >> mp_multi(B, C)

17 ans =

18 −Inf 1 −Inf
19 2 −Inf −Inf
20 −Inf −Inf 3

and not square matrices:

1 >> A = [mp_zero 1 mp_zero; 2 mp_zero mp_zero];

2 >> B = [3 mp_zero mp_zero; mp_zero mp_zero 4];

3 >> [C, err] = mp_div(A, B)

4 C =

5 −Inf −2 −Inf
6 −Inf −Inf −Inf
7 −2 −Inf −Inf
8
9 err =

10 0

11
12 >> mp_multi(B, C)

13 ans =

14 −Inf 1 −Inf
15 2 −Inf −Inf

51

See also
mp_inv, mp_multi, mp_one, mp_zero

mp_egv_bo93

eigenvector and eigenvalue of matrix A

Syntax
eigenvector = mp_egv_bo93(A, x0)
eigenvector = mp_egv_bo93(A, x0, r)
[eigenvector, eigenvalue] = mp_egv_bo93(A, x0)
[eigenvector, eigenvalue] = mp_egv_bo93(A, x0, r)

Description
Function returns an eigenvector and an eigenvalue of matrix A
by [Braker and G.-J. Olsder 1993], see alg. 2, page 23.

• A must be a square matrix, A ∈ Rn×nε

• algorithm starts from vector x0 ∈ Rn

• r (optional) is the maximum number of steps, after which the
algorithm stops — default r = 1000

• if A has more than one eigenvalue, function returns only one

• if A has more than one eigenvector associated with the eigenvalue,
function returns only one

Example

Let us consider example 2.43.

1 >> A = [mp_zero 3 mp_zero 1;

2 2 mp_zero 1 mp_zero;

3 1 2 2 mp_zero;

4 mp_zero mp_zero 1 mp_zero];

5
6 >> x0 = [0 mp_zero mp_zero mp_zero]';

7
8 >> [v, l] = mp_egv_bo93(A, x0)

9 v =

10 10.0000

52

11 9.5000

12 9.0000

13 7.5000

14
15 l =

16 2.5000

See also
mp_egv_o91, mp_egv_pqc, mp_egv_sw001, mp_egv_sw002, mp_is_egv1,
mp_is_egv2, mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_mcm, mp_mcm_fw,
mp_mcm_karp

mp_egv_o91

(candidate) eigenvector and eigenvalue of matrix A

Syntax
eigenvector = mp_egv_o91(A, x0)
eigenvector = mp_egv_o91(A, x0, r)
[eigenvector, eigenvalue] = mp_egv_o91(A, x0)
[eigenvector, eigenvalue] = mp_egv_o91(A, x0, r)

Description
Function returns a (candidate) eigenvector and an eigenvalue of
matrix A by [G.-J. Olsder 1991] — alg. 1, page 23.

• A must be a square matrix, A ∈ Rn×nε ,

• algorithm starts from vector x0 ∈ Rn,
• r (optional) is the maximum number of steps, after which the

algorithm stops, default r = 1000

• If A has more than one eigenvalue, function returns only one.

• If A has more than one eigenvector associated with the eigenvalue,
function returns only one.

Example

Let us consider example 2.42.

1 >> A = [3 7; 2 4], x0 = [0 0]'

2 A =

53

3 3 7

4 2 4

5
6 x0 =

7 0

8 0

9
10 >> [v, l] = mp_egv_o91(A, x0)

11 v =

12 9.0000

13 6.5000

14
15 l =

16 4.5000

See also
mp_egv_bo93, mp_egv_pqc, mp_egv_sw001, mp_egv_sw002, mp_is_egv1,
mp_is_egv2, mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_mcm, mp_mcm_fw,
mp_mcm_karp

mp_egv_pqc

eigenvalue of A calculated form components p, q and c

Syntax
l = mp_egv_pqc(p, q, c)
l = mp_egv_pqc([p q c])

Description

• Function calculates an eigenvalue of matrix A from components
p,q and c (see theorem 2.40).

• The components can be calculated by mp_pqc.

• p,q ∈ N0 : p > q > 0, c ∈ R

Example

Let us consider example 2.41.

1 >> A = [3 7; 2 4]

2 A =

54

3 3 7

4 2 4

5
6 >> x0 = [0 0]'

7 x =

8 0

9 0

10
11 >> mp_egv_pqc(mp_pqc(A, x0))

12 ans =

13 4.5000

See also
mp_pqc, mp_egv_bo93, mp_egv_o91, mp_egv_sw001, mp_egv_sw002, mp_is_egv1,
mp_is_egv2, mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_mcm, mp_mcm_fw,
mp_mcm_karp

mp_egv_sw001

eigenvector and eigenvalue of matrix A

Syntax
eigenvector = mp_egv_sw001(A, x0)
eigenvector = mp_egv_sw001(A, x0, r)
[eigenvector, eigenvalue] = mp_egv_sw001(A, x0)
[eigenvector, eigenvalue] = mp_egv_sw001(A, x0, r)

Description
Function returns an eigenvector and an eigenvalue of matrix A
by [Subiono and van der Woude 2000], see alg. 4, page 28.

• A must be a square matrix, A ∈ Rn×nε ,

• algorithm starts from vector x0 ∈ Rn,
• r (optional) is the maximum number of steps, after which the

algorithm stops, default r = 1000.

• If A has more than one eigenvalue, function returns only one.

• If A has more than one eigenvector associated with the eigenvalue,
function returns only one.

55

Example

Let us consider example 2.46.

1 >> A = [3 7; 2 4], x0 = [0 0]'

2 A =

3 3 7

4 2 4

5
6 x0 =

7 0

8 0

9
10 >> [v, l] = mp_egv_sw001(A, x0)

11 v =

12 11.5000

13 9.0000

14
15 l =

16 4.5000

See also
mp_egv_bo93, mp_egv_o91, mp_egv_pqc, mp_egv_sw002, mp_is_egv1,
mp_is_egv2, mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_mcm, mp_mcm_fw,
mp_mcm_karp

mp_egv_sw002

eigenvector and eigenvalue of matrix A

Syntax
eigenvector = mp_egv_sw002(A, x0)
eigenvector = mp_egv_sw002(A, x0, r)
[eigenvector, eigenvalue] = mp_egv_sw002(A, x0)
[eigenvector, eigenvalue] = mp_egv_sw002(A, x0, r)

Description
Function returns an eigenvector and an eigenvalue of matrix A
by [Subiono and van der Woude 2000], see alg. 5, page ??.

56

• A must be a square matrix, A ∈ Rn×nε ,

• algorithm starts from vector x0 ∈ Rn,
• r (optional) is the maximum number of steps, after which the

algorithm stops, default r = 1000.

• If A has more than one eigenvalue, function returns only one.

• If A has more than one eigenvector associated with the eigenvalue,
function returns only one.

Example

Let us consider example 2.45.

1 >> A = [mp_zero 3 mp_zero 1;

2 2 mp_zero 1 mp_zero;

3 1 2 2 mp_zero;

4 mp_zero mp_zero 1 mp_zero];

5
6 >> x0 = [0 mp_zero mp_zero mp_zero]';

7
8 >> [v, l] = mp_egv_sw002(A, x0)

9 v =

10 12.5000

11 12.0000

12 11.5000

13 10.0000

14
15 l =

16 2.5000

See also
mp_egv_bo93, mp_egv_o91, mp_egv_pqc, mp_egv_sw001, mp_is_egv1,
mp_is_egv2, mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_mcm, mp_mcm_fw,
mp_mcm_karp

mp_ev_fw

eigenvectors of matrix A

Syntax
[eigenvectors] = mp_eg_fw(A)

57

Description
Function returns a set of eigenvectors of A from final Floyd–Warshall
matrix (genenerated by mp_mcm_fw or mp_mx_fw), without recurrent
eigenvectors, as well as without their linear combinations. Function
uses the Floyd–Warshall algorithm Ahuja, Magnanti, and Orlin 1993
adapted by G.-J. Olsder, Roos, and van Egmond 1999 — see step 3 of
alg. 5, page 25.

Example

Let us consider example 2.44.

1 >> A=[4 mp_zero mp_zero mp_zero mp_zero 4;

2 2 5 1 mp_zero mp_zero mp_zero;

3 mp_zero mp_zero mp_zero 6 mp_zero mp_zero;

4 mp_zero mp_zero 8 3 mp_zero mp_zero;

5 9 mp_zero mp_zero mp_zero mp_zero mp_zero;

6 mp_zero mp_zero mp_zero mp_zero 8

3];

7
8 >> F = mp_mx_fw(A, 7)

9 F =

10 0 −Inf −Inf −Inf −2 −3
11 −5 −2 −6 −7 −7 −8
12 −Inf −Inf 0 −1 −Inf −Inf
13 −Inf −Inf 1 0 −Inf −Inf
14 2 −Inf −Inf −Inf 0 −1
15 3 −Inf −Inf −Inf 1 0

16
17 >> ev = mp_ev_fw(F)

18 ev =

19 0 0 −2 −3 −2
20 −5 −5 −6 −6 −7
21 0 −1 0 0 −1
22 1 0 1 1 0

23 2 2 0 −1 0

24 3 3 1 0 1

See also
mp_mcm_fw, mp_mx_fw

58

mp_eye

(max, +) identity matrix

Syntax
Y = mp_eye
Y = mp_eye(n)
Y = mp_eye(n, m)

Description
• mp_eye returns 0.
• mp_eye(n) or mp_eye([n]) returns an n–by–n (max, +) identity

matrix, i.e. with (max, +) units on the main diagonal and ε else-
where.

• mp_eye(n, m) or mp_eye([n m]) returns an n–by–m (max, +)
identity matrix.

Example

1 >> mp_eye

2 ans =

3 0

4
5 >> mp_eye(2)

6 ans =

7 0 −Inf
8 −Inf 0

9
10 >> mp_eye(2, 3)

11 ans =

12 0 −Inf −Inf
13 −Inf 0 −Inf

See also
mp_one, mp_ones, mp_zero, mp_zeros, mp_randi

mp_ganttr

Gantt chart of resources occupation in time

Syntax

59

mp_ganttr(X, time, MPX_Rsv)
mp_ganttr(X, time, MPX_Rsv, xrange)
mp_ganttr(X, time, MPX_Rsv, ytick)
mp_ganttr(X, time, MPX_Rsv, xrange, ytick)

Description
A Gantt chart of resources occupation in time, where
X a n ×m matrix of state vectors, i.e. a collection of m suc-

cessive state vectors
time a n × 1 vector of operation times for every entry in state

vector
(time of every event/operation), or
a n×m matrix of operation times for m iterations
(time of every event/operation in every iteration)

MPX_Rsv a matrix of resources–state–vector connection
for details see def. 5.1

xrange (optional) enables to specify limits of the x axis,
xrange = [xmin xmax],
by default, function finds the maximum and minimum of the
data
i.e. xmin = min(X), xmax = max(X+t)

ytick ytick = 0|1 (optional, default ytick = 1)
if ytick = 1 then every ytick is marked along y axis

Example

1 % collections of state vectors

2 >> V = [0 10 19 29 38 48 57 67 76 86;

3 1 11 20 30 39 49 58 68 77 87;

4 0 9 19 28 38 47 57 66 76 85;

5 3 12 22 31 41 50 60 69 79 88;

6 6 16 25 35 44 54 63 73 82 92;

7 3 12 22 31 41 50 60 69 79 88;

8 7 16 26 35 45 54 64 73 83 92];

9
10 % operation times

11 >> op_times = [1 5 3 2 3 4 3]';

12
13 % matrix of resources−state−vector connection

14 >> R_V = [[1 2 0]

15 [3 4 5]

16 [6 7 0]];

17
18 >> mp_ganttr(X(:, 1:8), t, R);

60

A Gantt chart generated by the code presented above is shown in fig. 9.

Figure 10: A usage of resources in time, the Gantt chart generated by func-
tion mp_ganttr.

See also
mp_ganttx

mp_ganttx

Gantt chart of a state vector evolution in time
Gantt chart of execution of operations

Syntax
mp_ganttx(X, time)
mp_ganttx(X, time, xrange)
mp_ganttx(X, time, ytick)
mp_ganttx(X, time, xrange, ytick)

Description

61

A Gantt chart of a state vector evolution in time (or execution of op-
erations)
X a n ×m matrix of state vectors, i.e. a collection of m suc-

cessive state vectors
t a n × 1 vector of operation times for every entry in state

vector
(time of every event/operation), or
a n×m matrix of operation times for m iterations
(time of every event/operation in every iteration)

xrange (optional) enables to specify limits of the x axis,
xrange = [xmin xmax],
by default, function finds the maximum and minimum of the
data
i.e. xmin = min(X), xmax = max(X+t)

ytick ytick = 0|1 (optional, default ytick = 1)
if ytick = 1 then every ytick is marked along y axis

Example

A part of code from file exGanttx.m demonstrates use of mp_ganttx:

1 % collections of 4 state vectors

2 V = [14 1060 2196 2762

3 201 1232 2368 2934

4 374 1400 2536 3102

...

25 331 921 1432 2537];

26
27 operation_times = [172;

28 168;

29 87;

...

50 321];

51
52 mp_ganttx(V, operation_times, [0 4000], 0);

A Gantt chart generated by the code presented above is shown in
fig. 11.

See also

62

Figure 11: An exemplary Gantt chart generated by function mp_ganttx.

mp_ganttr

mp_inv

(max, +) matrix invertion

Syntax
Y = mp_inv(A)
[Y, err] = mp_inv(A)

Description
Y = A−1

• If A is a scalar then Y = mp_power(A, -1) and err = 0.
• If A is a square matrix then Y = A−1 and if AY = YA = I then
err = 0, otherwise err = 1.

• If A not a square matrix then Y = (I-A)’ and if AY = I then
err = 0, otherwise err = 1.

Example

Let us consider a square matrix:

63

1 >> mp_inv(5)

2 ans =

3 −5
4
5 >> A = [mp_zero 1 mp_zero;

6 2 mp_zero mp_zero;

7 mp_zero mp_zero 3];

8
9 >> [Y, err] = mp_inv(A)

10 Y =

11 −Inf −2 −Inf
12 −1 −Inf −Inf
13 −Inf −Inf −3
14
15 err =

16 0

17
18 >> mp_multi(A, Y)

19 ans =

20 0 −Inf −Inf
21 −Inf 0 −Inf
22 −Inf −Inf 0

And now not a square matrix:

1 >> A = [mp_zero 1 mp_zero;

2 2 mp_zero mp_zero];

3
4 >> [Y, err] = mp_inv(A)

5 Y =

6 −Inf −2
7 −1 −Inf
8 −Inf −Inf
9
10 err =

11 0

12
13 >> mp_multi(A, Y)

14 ans =

15 0 −Inf
16 −Inf 0

See also

64

mp_power, mp_multi, mp_div, mp_eye

mp_is_egv1

checks, if vector x is an eigenvector of A

Syntax
y = mp_is_egv1(A, x)
y = mp_is_egv1(A, x, eigenvalue)
y = mp_is_egv1(A, x, eigenvalue, d)

Description
Function returns 1 if x is an eigenvector of A, otherwise 0.

• A must be a square matrix, A ∈ Rn×nε ,
• x ∈ Rn,
• eigenvalue of A (optional), eigenvalue ∈ R, default it is com-

puted by mp_mcm(A),
• d (optional) a number of arcs in the maximum cycle mean of G(A),

default d = 1,
• if d ∈ N is given, the function checks eq. (69) and returns 1 if (69)

is fulfiled, 0 otherwise.

Adx = eigenvaluedx, (69)

Example

1 >> A = [2 5; 3 3]; x = [1 0]';

2 >> mp_is_egv1(A, x)

3 ans =

4 1

5
6 >> % let's check:

7 >> mp_multi(A, x)

8 ans =

9 5

10 4

11
12 >> mp_multi(mp_mcm(A), x)

13 ans =

14 5

15 4

65

See also
mp_egv_bo93, mp_egv_o91, mp_egv_pqc, mp_egv_sw001, mp_egv_sw002,
mp_is_egv2, mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_mcm, mp_mcm_fw,
mp_mcm_karp

mp_is_egv2

checks, if vector x is an eigenvector of A

Syntax
y = mp_is_egv1(x2, x1, eigenvalue)
y = mp_is_egv1(x2, x1, eigenvalue, d)

Description
Function returns 1 if eigenvalue⊗ x1 = x2, 0 otherwise.

• x1, x2 ∈ Rn, eigenvalue ∈ R,
• if d ∈ N is given (optional, default d = 1) then

– function returns 1 if eigenvalued ⊗ x1 = x2, 0 otherwise.

Example

1 >> A = [2 5; 3 3]

2 A =

3 2 5

4 3 3

5 >> lambda = mp_mcm(A)

6 lambda =

7 4

8
9 >> x = [1 0]'

10 x =

11 1

12 0

13
14 >> mp_multi(A, x)

15 ans =

16 5

17 4

66

18
19 >> mp_is_egv2(ans, x, lambda)

20 ans =

21 1

See also
mp_egv_bo93, mp_egv_o91, mp_egv_pqc, mp_egv_sw001, mp_egv_sw002,
mp_is_egv1, mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_mcm, mp_mcm_fw,
mp_mcm_karp

mp_is_pga

is a precedence graph G(A) acyclic?
has a matrix A got any eigenvalue?

Syntax
y = mp_is_pga(A)

Description

• Function returns 1:

– if G(A) is acyclic (G(A) does not contain any circuit),
or equivalently

– if A has NOT got any eigenvalue,

• 0 otherwise.

• A must be a square matrix.

Example

Let us consider an acyclic digraph from Fig. 1, matrix A represents this
graph.

1 >> A = [mp_zero 4 mp_zero;

2 2 mp_zero mp_zero;

3 mp_zero 3 2];

4
5 >> mp_is_pga(A)

6 ans =

7 0

67

See also
mp_is_pgc, mp_is_pgsc1, mp_is_pgsc2, mp_mcm, mp_mcm_karp, mp_mcm_fw,

mp_isegv, mp_isegvv, mp_compute_pqc, mp_lpqc, mp_FloydWarshallMx,
mp_egvFloydWarshall, mp_egv1, mp_egv2, mp_egv3, mp_egv4

mp_is_pgc

is precedence graph G(A) connected?

Syntax
y = mp_is_pgc(A)

Description
• Function returns 1 if precedence graph G(A) is connected, 0 oth-

erwise.
• A must be a square matrix.

Example

Let us consider a digraph from Fig. 1.

1 >> A = [mp_zero 4 mp_zero;

2 2 mp_zero mp_zero;

3 mp_zero 3 2];

4
5 >> mp_is_pgc(A)

6 ans =

7 1

See also
mp_is_pga, mp_is_pgsc1, mp_is_pgsc2

mp_is_pgsc1

is precedence graph G(A) strongly connected?
is matrix A irreducible?
has matrix A got exactly one eigenvalue?

Syntax

68

y = mp_is_pgsc1(A)

Description
• Function returns 1:

– if G(A) is strongly connected, or equivalently
– if matrix A is irreducible, or
– if matrix A has got exactly one eigenvalue,

• 0 otherwise.
• A must be a square matrix.
• Result is calculated based directly on definition 2.27

Example

Let us consider a digraph from Fig. 1.

1 >> A = [mp_zero 4 mp_zero;

2 2 mp_zero mp_zero;

3 mp_zero 3 2];

4
5 >> mp_is_pgsc1(A)

6 ans =

7 0

See also
mp_is_pga, mp_is_pgc, mp_is_pgsc2, mp_mcm, mp_mcm_karp, mp_mcm_fw,

mp_isegv, mp_isegvv, mp_compute_pqc, mp_lpqc, mp_FloydWarshallMx,
mp_egvFloydWarshall, mp_egv1, mp_egv2, mp_egv3, mp_egv4

mp_is_pgsc2

is precedence graph G(A) strongly connected?
is matrix A irreducible?
has matrix A got exactly one eigenvalue?

Syntax
y = mp_is_pgsc2(A)

Description
Like mp_is_pgsc1, function checks whether G(A) is strongly connected
(from theorem 2.29).

69

• Function returns 1:

– if G(A) is strongly connected, or equivalently
– if matrix A is irreducible, or
– if matrix A has got exactly one eigenvalue,

• 0 otherwise.

• A must be a square matrix.

See also
mp_is_pga, mp_is_pgc, mp_is_pgsc1, mp_mcm, mp_mcm_karp, mp_mcm_fw,

mp_isegv, mp_isegvv, mp_compute_pqc, mp_lpqc, mp_FloydWarshallMx,
mp_egvFloydWarshall, mp_egv1, mp_egv2, mp_egv3, mp_egv4

mp_mcm

(max, +) eigenvalue of matrix A
maximum cycle mean of precedence graph G(A)

Syntax
l = mp_mcm(A)
[l, d] = mp_mcm(A)

Description

• (max, +) eigenvalue of an irreducible matrix A

– if A is not irreducible, it gives only one eigenvalue.

• Maximum cycle mean of precedence graph G(A)
– if G(A) is not strongly connected, it gives only one value.

• Function returns:

– l— the eigenvalue of A or equivalently, the value of maximum
cycle mean of precedence graph G(A), from (16)

– d — the number of arcs in critical circuit.

• A must be a square matrix.

Example

Let us consider the digraph from Fig. 2.

70

1 >> A = [5 mp_zero 5;

2 mp_zero 6 3;

3 11 12 11];

4
5 >> [l, d] = mp_mcm(A)

6 l =

7 11

8 d =

9 1

See also
mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_mcm_fw, mp_mcm_karp,

mp_isegv, mp_isegvv, mp_compute_pqc, mp_lpqc, mp_FloydWarshallMx,
mp_egvFloydWarshall, mp_egv1, mp_egv2, mp_egv3, mp_egv4

mp_mcm_fw

(max, +) eigenvalue of matrix A
maximum cycle mean of precedence graph G(A)
Floyd–Warshall’s algorithm

Syntax
eigenvalue = mp_mcm_fw(A)
[eigenvalue, Afw] = mp_mcm_fw(A)

Description

• (max, +) eigenvalue of a matrix A

– if A is not irreducible, it gives only one eigenvalue.

• Maximum cycle mean of precedence graph G(A).
– if G(A) is not strongly connected, it gives only one value.

• Function returns:

– eigenvalue — an eigenvalue of A (a maximum cycle mean of
G(A)),

– Afw — a final Floyd–Warshall’s matrix,
– from Afw matrix can be obtained a set of eigenvectors by

mp_egvFloydWarshall.

• A must be a square matrix.

71

Function uses the Floyd–Warshall procedure [Ahuja, Magnanti, and
Orlin 1993] adapted by [G.-J. Olsder, Roos, and van Egmond 1999] —
see steps 1–2 of alg. 5, page 25.

Example

Let us consider example 2.44

1 >> A=[4 mp_zero mp_zero mp_zero mp_zero 4;

2 2 5 1 mp_zero mp_zero mp_zero;

3 mp_zero mp_zero mp_zero 6 mp_zero mp_zero;

4 mp_zero mp_zero 8 3 mp_zero mp_zero;

5 9 mp_zero mp_zero mp_zero mp_zero mp_zero;

6 mp_zero mp_zero mp_zero mp_zero 8 3];

7
8 >> l = mp_mcm_fw(A)

9 l =

10 7

11
12 >> v = [0 −5 0 1 2 3]';

13
14 >> mp_multi(A, v)' == mp_multi(l, v)'

15 ans =

16 1 1 1 1 1 1

See also
mp_ev_fw, mp_mx_fw, mp_egv_bo93, mp_egv_o91, mp_egv_pqc, mp_egv_sw001,
mp_egv_sw002, mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_is_egv1,
mp_is_egv2, mp_mcm, mp_mcm_karp

mp_mcm_karp

(max, +) eigenvalue of matrix A
maximum cycle mean of precedence graph G(A)
Karp’s algorithm

Syntax
l = mp_mcm_karp(A)

Description

• (max, +) eigenvalue of an irreducible matrix A

72

– if A is not irreducible, it gives only one eigenvalue.

• Maximum cycle mean of precedence graph G(A)
– if G(A) is not strongly connected, it gives only one value.

• Function returns:

– the eigenvalue of A, or equivalently
– the value of maximum cycle mean of precedence graph G(A).

• A must be a square matrix.

Karp’s algorithm [Karp 1978] adapted by [Gaubert and Scilab 1998],
see page 18.

Example

Let us consider the matrix A from Fig. 2.

1 >> A = [5 mp_zero 5;

2 mp_zero 6 3;

3 11 12 11];

4
5 >> mp_mcm_karp(A)

6 ans =

7 11

See also
mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_mcm, mp_mcm_fw,

mp_isegv, mp_isegvv, mp_compute_pqc, mp_lpqc, mp_FloydWarshallMx,
mp_egvFloydWarshall, mp_egv1, mp_egv2, mp_egv3, mp_egv4

mp_multi

(max, +) multiplication of scalars, vectors or matrices

Syntax
y = mp_multi(m, n)

Description
y = n⊗ m

• If n and m are scalars, result is a (max, +) multiplication of n and
m.

73

• If n (or m) is scalar and m (or n) is vector, result is a vector the same
size as m (or n) where for every entries is (max, +) multiplication
by n (or m).

• If n (or m) is scalar and m (or n) is matrix, result is a matrix
the same size as m (or n) where for every entries is (max, +)
multiplication by n (or m).

• If n is an p×q matrix and m is an q×r matrix result is a (max, +)
product n and m returns an p× r matrix.

Example

1 >> mp_multi(−5, 7)

2 ans =

3 2

4
5 >> mp_multi(3, [mp_zero 4])

6 ans =

7 −Inf 7

8
9 >> A=[1 6 2; 8 3 4], B=[2 5; 3 3; 1 6]

10 A =

11 1 6 2

12 8 3 4

13
14 B =

15 2 5

16 3 3

17 1 6

18
19 >> mp_multi(A, B)

20 ans =

21 9 9

22 10 13

See also
mp_add, mp_div, mp_inv, mp_power, mp_one, mp_ones, mp_zero, mp_zeros

mp_mx_fw

74

final Floyd–Warshall’s matrix

Syntax
F = mp_mx_fw(A, eigenvalue)

Description
Floyd–Warshall algorithm [Ahuja, Magnanti, and Orlin 1993] adapted
by [G.-J. Olsder, Roos, and van Egmond 1999] — see alg. 3, page 25
for details.

• Function returns a final Floyd–Warshall matrix F from square
matrix A and its eigenvalue.

• From this matrix can be obtained set of eigenvectors of A by
mp_ev_fw.

Example

Let us consider example 2.44.

1 >> A=[4 mp_zero mp_zero mp_zero mp_zero 4;

2 2 5 1 mp_zero mp_zero mp_zero;

3 mp_zero mp_zero mp_zero 6 mp_zero mp_zero;

4 mp_zero mp_zero 8 3 mp_zero mp_zero;

5 9 mp_zero mp_zero mp_zero mp_zero mp_zero;

6 mp_zero mp_zero mp_zero mp_zero 8

3];

7
8 >> F = mp_mx_fw(A, 7)

9 F =

10 0 −Inf −Inf −Inf −2 −3
11 −5 −2 −6 −7 −7 −8
12 −Inf −Inf 0 −1 −Inf −Inf
13 −Inf −Inf 1 0 −Inf −Inf
14 2 −Inf −Inf −Inf 0 −1
15 3 −Inf −Inf −Inf 1 0

16
17 >> ev = mp_ev_fw(F)

18 ev =

19 0 0 −2 −3 −2
20 −5 −5 −6 −6 −7
21 0 −1 0 0 −1
22 1 0 1 1 0

23 2 2 0 −1 0

75

24 3 3 1 0 1

See also
mp_ev_fw, mp_mcm_fw

mp_mx2latex

matrix conversion from the Matlab (max, +) description to the LATEX

Syntax
mp_mx2latex(X)
mp_mx2latex(X, ’fileName’)

Description
(max, +) matrix (or vector) conversion from the Matlab®/Octave no-
tation to the LATEX source code.

• X is a matrix (or vector) to conversion;

• fileName (optional) is a name of file in which a LATEX source code
of X will be saved, default it is mp_mx.tex.

Example

1 >> A = [0 3 Inf 1

2 1 2 2 −Inf
3 −Inf Inf 1 0];

4
5 >> mp_mx2latex(A, 'A.tex')

LATEX source of A.tex:

1 \left[

2 \begin{array}{*{20}c}

3 0 & 3 & \infty & 1 \\

4 1 & 2 & 2 & \varepsilon \\

5 \varepsilon & \infty & 1 & 0 \\

6 \end{array}

7 \right]

76

LATEX result: 0 3 ∞ 1
1 2 2 ε
ε ∞ 1 0

See also
mp_mx2latex, mp_conv

mp_one

(max, +) unit (0), neutral element for oprtation ⊗

Syntax
y = mp_one

Description
mp_one returns 0.

Example

1 >> mp_one

2 ans =

3 0

See also
mp_ones, mp_zero, mp_zeros, mp_eye, mp_multi

mp_ones

(max, +) ones (0’s) matrix, vector or scalar

Syntax
y = mp_ones
y = mp_ones(n)
y = mp_ones(n, m)

Description

77

• mp_ones returns 0.

• mp_ones(n) or mp_ones([n]) is an n–by–n matrix of 0–s.

• mp_ones(n, m) or mp_ones([n, m]) is an n–by–m matrix of 0–s.

Example

1 >> mp_ones

2 ans =

3 0

4 >> mp_ones(2)

5 ans =

6 0 0

7 0 0

8
9 >> mp_ones(2, 3)

10 ans =

11 0 0 0

12 0 0 0

See also
mp_one, mp_zero, mp_zeros, mp_eye, mp_multi

mp_power

(max, +) raising to a power

Syntax
y = mp_power(x, n)
Y = mp_power(X, n)

Description
(max, +) n–th power of x, y = xn

(max, +) n–th power of square matrix X, Y = Xn

• If x is a scalar than from definition 2.2:

– x ∈ Rε, n ∈ R : xn = x× n (in conventional algebra).
– If n = 0 then x0 = 0.
– If x = ε and n > 0 then εn = ε.
– If x = ε and n < 0 then εn is not defined.

78

– If x = ε and n < 0 then ε0 = 0 by definition.

• If n is a vector (or a matrix) then result is a vector (or a matrix)
this same size, where every entries is (max, +) power of x to the
proper element from n.

• If X is a square matrix then n must belong to N0 ∪ {−1}, see
definition 2.15.

– If n /∈ N0 ∪ {−1} operation is not defined.

• If X is not a scalar nor square matrix operation is not defined.

Example

1 >> mp_power(3, 3)

2 ans =

3 9

4 >> mp_power(3, −2)
5 ans =

6 −6
7
8 >> mp_power(3, 1/4)

9 ans =

10 0.7500

11
12 >> mp_power(2, [1/4 1 4 −4])
13 ans =

14 0.50000 2.00000 8.00000 −8.00000
15
16 >> mp_power([1 6; −Inf 3], 3)

17 ans =

18 3 12

19 −Inf 9

See also
mp_multi, mp_inv, mp_div, mp_eye, mp_one, mp_zero

mp_pqc

computes components of an eigenvalue for mp_egv_pqc

Syntax

79

[p q c] = mp_pqc(A, x0)
[p q c] = mp_pqc(A, x0, r)

Description

• Function calculates the components p, q, c of an eigenvalue
of matrix A (see theorem 2.40).

• Algorithm starts from vector x0.

• r (optional, default r = 1000) is the maximum number of steps,
after which the algorithm stops.

• The eigenvalue of A from the results of mp_pqc can be calculated
by mp_egv_pqc.

• A must be a square matrix.

Example

Let us consider example 2.41.

1 >> A = [3 7; 2 4]

2 A =

3 3 7

4 2 4

5
6 >> x0 = [0 0]'

7 x =

8 0

9 0

10
11 >> mp_pqc(A, x0)

12 ans =

13 3 1 9

14
15 >> mp_egv_pqc(ans)

16 ans =

17 4.5000

See also
mp_egv_bo93, mp_egv_o91, mp_egv_pqc, mp_egv_sw001, mp_egv_sw002,
mp_is_egv1, mp_is_egv2, mp_is_pga, mp_is_pgsc1, mp_is_pgsc2, mp_mcm,
mp_mcm_fw, mp_mcm_karp

80

mp_randi

(max, +) random integer and ε

Syntax
Y = mp_randi(IMAX)
Y = mp_randi(IMAX, N)
Y = mp_randi(IMAX, M, N)
Y = mp_randi([IMIN IMAX], ...)

Description
• mp_randi returns a random integers in the range 1:IMAX (or IMIN:IMAX)

+ mp_zero.
• Additional arguments determine the shape of the return matrix
Y.

• For more info look at randi.

Example

1 >> mp_randi([0 10])

2 ans =

3 2

4
5 >> mp_randi([0 10], 3, 3)

6 ans =

7 0 1 8

8 3 −Inf 4

9 0 10 9

See also
mp_ones, mp_zeros

mp_solve_Axb

greatest subsolution of Ax = b
(max, +) residuation operation

Syntax
x = mp_solvAxb(A, b)
[x, err] = mp_solvAxb(A, b)

81

Description
(max, +) residuation

• The greatest subsolution of Ax = b, computes the largest x such
that Ax 4 b (see theorem 2.32).

• For A and b finite scalars, x = A− b (in conventional algebra).

• If x is the solution of Ax = b then err = 0, otherwise err = 1.

Example

1 % first example

2 >> a = 1; b = 2;

3 >> x = mp_solve_Axb(a, b)

4 x =

5 1

6
7 % let's check

8 >> mp_multi(a, x)

9 ans =

10 2

11
12 % second example

13 >> A = [2 3; 4 5]

14 A =

15 2 3

16 4 5

17
18 >> b = [6 8]'

19 b =

20 6

21 8

22
23 >> [x, err] = mp_solve_Axb(A, b)

24 x =

25 4

26 3

27
28 err =

29 0

30
31 >> mp_multi(A, x)

32 ans =

82

33 6

34 8

As we can see, this result is the solution of Ax = b, but depends on
parameters, a result can be a subsolution only, e.g.

35 % example with subsolution

36 >> b = [6 7]'

37 b =

38 6

39 7

40
41 >> [x, err] = mp_solve_Axb(A, b)

42 x =

43 3

44 2

45
46 err =

47 1

48
49 >> mp_multi(A, x)

50 ans =

51 5

52 7

See also
mp_star, mp_solve_xAxb

mp_solve_xAxb

(max, +) solution of x = Ax⊕ b

Syntax
x = mp_solve_xAxb(A, b)

Description

• It solves x = Ax⊕ b in the (max, +) algebra, i.e. x = A?b.

• When there is no circuits with positive weight in the precedence
graph G(A), then x = (A0⊕A1⊕· · ·⊕A(m−1))⊗b, where m denotes
the order of the square matrix A.

83

• A must be a square matrix.

Example

1 >> x = mp_solve_xAxb(−5, 2)

2 x =

3 2

4
5 >> x == mp_add(p_multi(−5, x), 2)

6 ans =

7 1

8
9 >> A = [mp_zero 2 3; −2 −10 −1; −5 −2 mp_one]

10 A =

11 −Inf 2 3

12 −2 −10 −1
13 −5 −2 0

14
15 >> b = [1 2 3]'

16 b =

17 1

18 2

19 3

20
21 >> x = mp_solve_xAxb(A, b)

22 x =

23 6

24 4

25 3

26
27 >> x == mp_add(mp_multi(A, x), b)

28 ans =

29 1

30 1

31 1

See also
mp_star, mp_solve_Axb

mp_star

84

(max, +) star operator

Syntax
B = mp_star(A)
[B, n] = mp_star(A)

Description
B = A? = A0 ⊕ A1 ⊕ . . .

• It solves x = Ax⊕ b in the (max, +) algebra (i.e. x = A?b).

• When there is no circuits with positive weight in the precedence
graph G(A), then A? = A0 ⊕ A1 ⊕ · · · ⊕ A(m−1), where m denotes
the order of the square matrix A.

• Function returns:

– star = A?

– n — a minimal value for what all entries in An are equal to ε.

• A must be a square matrix.

Example

1 >> mp_star(2)

2 ans =

3 Inf

4 >> mp_star(−1)
5 ans =

6 0

7
8 >> mp_star(mp_zero)

9 ans =

10 0

11
12 >> mp_star(mp_one)

13 ans =

14 0

15
16 >> mp_star(mp_zeros(2, 2))

17 ans =

18 0 −Inf
19 −Inf 0

20
21 >> [B, n] = mp_star([mp_zero mp_zero; 6 mp_zero])

22 B =

85

23 0 −Inf
24 6 0

25
26 n =

27 2

28
29 >> A = [mp_zero 2 3; −2 −10 −1; −5 −2 mp_one]

30 A =

31 −Inf 2 3

32 −2 −10 −1
33 −5 −2 0

34
35 >> [B, n] = mp_star(A)

36 B =

37 0 2 3

38 −2 0 1

39 −4 −2 0

40
41 n =

42 Inf

43
44 >> [B, n] = mp_star([2 3; mp_zero −1])
45 B =

46 Inf Inf

47 −Inf 0

48
49 n =

50 Inf

Lets find the minimal solution of the eq. (25):

51 >> a = −1; b = 2;

52 >> x = mp_multi(mp_star(a), b)

53 x =

54 2

55
56 >> mp_add(mp_multi(a, x), b) == x

57 ans =

58 1

for matrices:

59 >> A = [mp_zero mp_one mp_zero;

60 mp_zero mp_zero −1;
61 mp_one mp_zero mp_zero];

86

62 >> b = [10; mp_zero; mp_zero];

63 >> x = mp_multi(mp_star(A), b)

64 x =

65 10

66 9

67 10

Is it correct? Let us compare results from eqns. (25) and (26):

68 >> mp_add(mp_multi(A, x), b) == x

69 ans =

70 1

71 1

72 1

See also
mp_solve_xAxb, mp_solve_Axb, mp_is_pga, mp_is_pgc, mp_is_pgsc1,
mp_is_pgsc2, mp_mcm, mp_mcm_fw, mp_mcm_karp

mp_system

state fo an autonomous linear max–plus system

Syntax
X = mp_system(A, x0, k)
X = mp_system(A, x0, k, one_only)

Description
States of an autonomous linear max–plus system

x(k) = Ax(k-1),

where:
A a (max, +) system matrix;
k a cycle index (iteration number);
x0 an initial state vector, x0 = x(0);
one_only (optional, default one_only = 1)

if is set to 1, the result is a state vector x(k),
if one_only = 0, the result is a matrix of a collection
of state vectors from x(0) to x(k).

Example

87

1 >> A = [3 7; 2 4]

2 A =

3 3 7

4 2 4

5
6 >> x0 = [1 0]'

7 x0 =

8 1

9 0

10
11 >> mp_system(A, x0, 8)

12 ans =

13 25

14 22

15
16 >> mp_system(A, x0, 5, 0)

17 ans =

18 1 7 11 16 20 25

19 0 4 9 13 18 22

See also
mp_multi

mp_trace

(max, +) trace of a matrix

Syntax
y = mp_trace(A)

Description
the (max, +) trace of matrix A, i.e.
the (max, +) sum of main diagonal of A (or equivalently a maximal
element from main diagonal of A).

Example

1 >> A = [5 mp_zero 5; mp_zero 6 3; 11 12 11]

2 A =

3 5 −Inf 5

88

4 −Inf 6 3

5 11 12 11

6
7 >> mp_trace(A)

8 ans =

9 11

See also
mp_add

mp_zero

(max, +) zero (−∞), i.e. ε, neutral element for operation ⊕

Syntax
y = mp_zero

Description
mp_zero returns -Inf

Example

1 >> mp_zero

2 ans =

3 −Inf

See also
mp_zeros, mp_one, mp_ones, mp_eye, mp_add

mp_zeros

(max, +) zeros matrix, vector or scalar

Syntax
y = mp_zeros
y = mp_zeros(n)
y = mp_zeros(n, m)

89

Description
• mp_zeros returns ε, i.e. -Inf.
• mp_zeros(n) or mp_zeros([n]) returns an n–by–n matrix of ε–s.
• mp_zeros(n, m) or mp_zeros([n m]) returns an n–by–m matrix

of ε–s.

Example

1 >> mp_zeros

2 ans =

3 −Inf
4
5 >> mp_zeros(2)

6 ans =

7 −Inf −Inf
8 −Inf −Inf
9
10 >> mp_zeros(2, 3)

11 ans =

12 −Inf −Inf −Inf
13 −Inf −Inf −Inf

See also
mp_zero, mp_one, mp_ones, mp_eye, mp_add

mpm_add

(min, +) addition of scalars, vectors or matrices

Syntax
y = mpm_sum(n,m)

Description
y = n ∨ m

• If n and m are scalars, result is a (min, +) sum of n and m.
• If n (or m) is scalar and m (or n) is vector, result is a vector the

same size as m (or n) where for every entries is (min, +) added n
(or m).

90

• If n (or m) is scalar and m (or n) is matrix, result is a matrix the
same size as m (or n) where for every entries is (min, +) added n
(or m).

• If n and m are this same size matrices, result is an array the same
size as n (and m) with the entries equal to (min, +) addition
elements from n and m.

Example

1 >> mpm_add(−5, 7)

2 ans =

3 −5
4
5 >> mpm_add(3, [mpm_zero 4])

6 ans =

7 3 3

8 >> A = [1 6; 8 3], B = [2 5; 3 3]

9 A =

10 1 6

11 8 3

12
13 B =

14 2 5

15 3 3

16
17 >> ans =

18
19 1 5

20 3 3

See also
mpm_multi, mpm_one, mpm_ones, mpm_zero, mpm_zeros

mpm_div

(min, +) division

Syntax
Z = mpm_div(A, B)
[Z, err] = mpm_div(A, B)

91

Description
Z = A� B

• If A is a scalar
– if B is a scalar, result is a scalar: (min, +) division of A by B;
– if B is a vector (or matrix), result is a vector (or a matrix)

where every entries are: A divided by apropriate entry of B.
• If A is a vector (or a matrix)

– if B is a scalar, result is a vector (or a matrix) the same size
as A where every entries of A are (min, +) divided by B;

– if B is a vector (or a matrix) the same size as A: the result
is (min, +) division A by B, i.e. mpm_multi(mpm_inv(B),
A), and when B is (min, +)-invertable err = 0, otherwise
err = 1;

– if B is a vector (or a matrix) different size than A — operation
is not defined.

• Division by (min, +) zero (Inf) is not defined - and returns NaN.

Example

1 >> mpm_div(3, 3)

2 ans =

3 0

4
5 >> mpm_div(3, mpm_one)

6 ans =

7 3

8
9 >> mpm_div(3, mpm_zero)

10 ans =

11 NaN

12
13 >> mpm_div([mpm_zero 7 mpm_one], 3)

14 ans =

15 Inf 4 −3
16
17 >> mpm_div(3, [mpm_zero 7 mpm_one])

18 ans =

19 NaN −4 3

20
21 >> A = [mpm_zero 1 mpm_zero;

92

22 2 mpm_zero mpm_zero;

23 mpm_zero mpm_zero 3];

24
25 >> B = [3 mpm_zero mpm_zero;

26 mpm_zero mpm_zero 4;

27 mpm_zero 5 mpm_zero];

28
29 >> [C, err] = mpm_div(A, B)

30 C =

31 Inf −2 Inf

32 Inf Inf −2
33 −2 Inf Inf

34
35 err = 0

36
37 >> mpm_multi(B, C)

38 ans =

39 Inf 1 Inf

40 2 Inf Inf

41 Inf Inf 3

See also
mpm_inv, mpm_multi, mpm_one, mpm_zero

mpm_eye

(min, +) identity matrix

Syntax
Y = mpm_eye
Y = mpm_eye(n)
Y = mpm_eye(n, m)

Description

• mpm_eye returns 0.

• mpm_eye(n) or mpm_eye([n]) returns an n–by–n (min, +) identity
matrix with 0–s on the main diagonal and Inf’s elsewhere.

• mpm_eye(n, m) or mpm_eye([n m]) returns an n–by–m (min, +)
identity matrix.

93

Example

1 >> mpm_eye

2 ans =

3 0

4
5 >> mpm_eye(2)

6 ans =

7 0 Inf

8 Inf 0

9
10 >> mpm_eye(2, 3)

11 ans =

12 0 Inf Inf

13 Inf 0 Inf

See also
mpm_one, mpm_ones, mpm_zero, mpm_zeros, mpm_randi

mpm_inv

(min, +) matrix invertion

Syntax
Y = mpm_inv(A)
[Y, err] = mpm_inv(A)

Description
Y = A−1

• If A is a scalar then Y = mpm_power(A, -1) and err = 0.

• If A is a square matrix then Y = A−1 and if AY = YA = I then
err = 0, otherwise err = 1.

• If A is not a square matrix then Y = (I-A)’ and if AY = I then
err = 0, otherwise err = 1.

Example

Let us consider a square matrix:

94

1 >> mpm_inv(5)

2 ans =

3 −5
4
5 >> A = [mpm_zero 1 mpm_zero;

6 2 mpm_zero mpm_zero;

7 mpm_zero mpm_zero 3];

8
9 >> [Y, err] = mpm_inv(A)

10 Y =

11 Inf −2 Inf

12 −1 Inf Inf

13 Inf Inf −3
14
15 err =

16 0

17
18 >> A = [mpm_zero 1 mpm_zero;

19 2 mpm_zero mpm_zero];

20
21 >> [Y, err] = mpm_inv(A)

22 Y =

23 Inf −2
24 −1 Inf

25 Inf Inf

26 err =

27 0

28
29 >> mpm_multi(A, Y)

30 ans =

31 0 Inf

32 Inf 0

See also
mpm_power, mpm_multi, mpm_div, mpm_eye

mpm_multi

(min, +) multiplication of scalars, vectors or matrices

Syntax

95

y = mpm_multi(m, n)

Description
y = n ∧ m

• If n and m are scalars, result is a (min, +) multiplication of n and
m.

• If n (or m) is scalar and m (or n) is vector, result is a vector the same
size as m (or n) where for every entries is (min, +) multiplication
by n (or m).

• If n (or m) is scalar and m (or n) is matrix, result is a matrix the
same size as m (or n) where for every entries is (min, +) multipli-
cation by n (or m).

• If n is an p×q matrix and m is an q×r matrix result is a (min, +)
product n and m returns an p× r matrix.

Example

1 >> mpm_multi(−5, 7)

2 ans =

3 2

4
5 >> mpm_multi(3, [mpm_zero 4])

6 ans =

7 Inf 7

8
9 >> A = [1 6 2; 8 3 4], B = [2 5; 3 3; 1 6]

10 A =

11 1 6 2

12 8 3 4

13
14 B =

15 2 5

16 3 3

17 1 6

18
19 mpm_multi(A, B)

20 ans =

21 3 6

22 5 6

See also

96

mpm_add, mpm_div, mpm_inv, mpm_power, mpm_one, mpm_ones, mpm_zero,
mpm_zeros

mpm_mx2latex

matrix conversion from the Matlab (min, +) description to the LATEX

Syntax
mpm_mx2latex(X)
mpm_mx2latex(X, ’fileName’)

Description
(min, +) matrix (or vector) conversion from the Matlab®/Octave no-
tation to the LATEX source code.

• X is a matrix (or vector) to conversion;

• fileName (optional) is a name of file in which a LATEX source code
of X will be saved, default it is mpm_mx.tex.

Example

1 >> A = [0 3 Inf 1

2 1 2 2 −Inf
3 −Inf Inf 1 0];

4
5 >> mpm_mx2latex(A, 'A.tex')

LATEX source of A.tex:

1 \left[

2 \begin{array}{*{20}c}

3 0 & 3 & \varepsilon & 1 \\

4 1 & 2 & 2 & −\infty \\

5 −\infty & \varepsilon & 1 & 0 \\

6 \end{array}

7 \right]

LATEX result: 0 3 ε 1
1 2 2 −∞
−∞ ε 1 0

97

See also
mpm_mx2latex, mp_conv

mpm_one

(min, +) unit (0), neutral element for oprtation ∧

Syntax
y = mpm_one

Description
mpm_one returns 0.

Example

1 >> mpm_one

2 ans =

3 0

See also
mpm_ones, mpm_zero, mpm_zeros, mpm_eye, mpm_multi

mpm_ones

(min, +) ones (0’s) matrix, vector or scalar

Syntax
y = mpm_ones
y = mpm_ones(n)
y = mpm_ones(n,m)

Description

• mpm_ones returns 0.

• mpm_ones(n) or mpm_ones([n]) is an n–by–n matrix of 0–s.

• mpm_ones(n,m) or mpm_ones([n,m]) is an n–by–m matrix of 0–s.

98

Example

1 >> mpm_ones

2 ans =

3 0

4
5 >> mpm_ones(2)

6 ans =

7 0 0

8 0 0

9
10 >> mpm_ones(2, 3)

11 ans =

12 0 0 0

13 0 0 0

See also
mpm_one, mpm_zero, mpm_zeros, mpm_eye, mpm_multi

mpm_plus

(min, +) plus operator
shortest path matrix

Syntax
Y = mpm_plus(A)
[Y, n] = mpm_plus(A)

Description

Y = A+ = A1 ∨ A2 ∨ . . .
A+ ∨ A0 = A?

When there is no circuits with negative weight in the precedence graph
G(A), then

A+ = A1 ∨ A2 ∨ · · · ∨ A(m−1)

where m denotes the order of the square matrix A.

Function returns:

99

• Y = A+

• n — a minimal value for what all entries in An are equal to ε.

A must be a square matrix.

Example

1 >> mpm_plus(2)

2 ans =

3 2

4
5 >> mpm_add(mpm_one, mpm_plus(2)) == mpm_star(2)

6 ans =

7 1

Let us consider a shortest path problem — example 3.3.

1 >>A=[mpm_zero mpm_zero mpm_zero mpm_zero mpm_zero mpm_zero;

2 5 mpm_zero mpm_zero mpm_zero mpm_zero mpm_zero;

3 3 mpm_zero mpm_zero mpm_zero mpm_zero mpm_zero;

4 mpm_zero 2 mpm_zero mpm_zero 5 mpm_zero;

5 mpm_zero 1 4 mpm_zero mpm_zero mpm_zero;

6 mpm_zero mpm_zero 8 2 4 mpm_zero]

7
8 >> mpm_plus(A)

9 ans =

10 Inf Inf Inf Inf Inf Inf

11 5 Inf Inf Inf Inf Inf

12 3 Inf Inf Inf Inf Inf

13 7 2 9 Inf 5 Inf

14 6 1 4 Inf Inf Inf

15 9 4 8 2 4 Inf

See also
mpm_star, mp_is_pga, mp_is_pgc

mpm_power

(min, +) raising to a power of scalar or a square matrix

Syntax

100

y = mpm_power(x, n)
Y = mpm_power(X, n)

Description
(min, +) n–th power of x, y = xn

(min, +) n–th power of square matrix X, Y = Xn

• If x is a scalar than:
– x ∈ Rε, n ∈ R : xn = x× n (in conventional algebra).
– If n = 0 then x0 = 0.
– If x = ε and n > 0 then εn = ε.
– If x = ε and n < 0 then εn is not defined.
– If x = ε and n < 0 then ε0 = 0 by definition.

• If n is a vector (or a matrix) then result is a vector (or a matrix)
this same size, where every entries is (min, +) power of x to the
proper element from n.

• If X is a square matrix then n must belong to N0 ∪ {−1},
– If n /∈ N0 ∪ {−1} operation is not defined.

• If X is not a scalar nor square matrix operation is not defined.

Example

1 >> mpm_power(3, 3)

2 ans =

3 9

4
5 >> mpm_power(3, −2)
6 ans =

7 −6
8
9 >> mpm_power(3, 1/4)

10 ans =

11 0.7500

12
13 >> mpm_power(2, [1/4 1 4 −4])
14 ans =

15 0.5000 2.0000 8.0000 −8.0000
16
17 >> mpm_power([1 6; 8 3], 3)

18 ans =

19 3 8

20 10 9

101

See also
mpm_multi, mpm_inv, mpm_div, mpm_eye, mpm_one, mpm_zero

mpm_star

(min, +) star operator

Syntax
B = mpm_star(A)
[B, n] = mpm_star(A)

Description
B = A? = A0 ∨ A+ = A0 ∨ A1 ∨ . . . It solves x = Ax ∨ b in the (min, +)
algebra (i.e. x = A?b).
When there is no circuits with negative weight in the precedence graph
G(A), then

A? = A0 ∨ A1 ∨ · · · ∨ A(m−1)

where m denotes the order of the square matrix A.

Function returns:

• B = A?

• n — a minimal value for what all entries in An are equal to ε.

A must be a square matrix.

Example

1 >> mpm_star(2)

2 ans =

3 0

4
5 >> mpm_star(−1)
6 ans =

7 −Inf
8
9 >> mpm_star(mpm_zero)

10 ans =

11 0

102

12
13 >> mpm_star(mpm_one)

14 ans =

15 0

16
17 >> mpm_star(mpm_zeros(2, 2))

18 ans =

19 0 Inf

20 Inf 0

21
22 >> [B, n] = mpm_star([mpm_zero mpm_zero; 6 mpm_zero])

23 B =

24 0 Inf

25 6 0

26 n =

27 2

28
29 >> [B, n] = mpm_star([mpm_zero −2 −3; 2 10 1; 5 2 mpm_one])

30 B =

31 0 −2 −3
32 2 0 −1
33 4 2 0

34 n =

35 Inf

36
37 >> [B, n] = mpm_star([2 3; mpm_zero −1])
38 B =

39 0 Inf

40 Inf −Inf
41 n =

42 Inf

Lets find the maximal solution of x = Ax ∨ b

43 >> a = 1; b = 2;

44 >> x = mpm_multi(mpm_star(a), b)

45 x =

46 2

47
48 >> mpm_add(mpm_multi(a, x), b) == x

49 ans =

50 1

for matrices:

103

51 >> A = [mpm_zero mpm_one mpm_zero;

52 mpm_zero mpm_zero 1;

53 mpm_one mpm_zero mpm_zero];

54 >> b = [10; mpm_zero; mpm_zero];

55 >> x = mpm_multi(mpm_star(A), b)

56 x =

57 10

58 11

59 10

Is it correct?

60 >> mpm_add(mpm_multi(A, x), b) == x

61 ans =

62 1

63 1

64 1

See also
mpm_plus, mp_is_pga, mp_is_pgc

mpm_zero

(min, +) zero (−∞)
(min, +) neutral element for operation ∨

Syntax
y = mpm_zero

Description
mpm_zero returns Inf.

Example

1 >> mpm_zero

2 ans =

3 Inf

See also
mpm_zeros, mpm_one, mpm_ones, mpm_eye, mpm_add

104

mpm_zeros

(min, +) zeros matrix, vector or scalar

Syntax
y = mpm_zeros
y = mpm_zeros(n)
y = mpm_zeros(n, m)

Description

• mpm_zeros returns Inf.

• mpm_zeros(n) or mpm_zeros([n]) returns an n–by–n matrix of
Inf-s.

• mpm_zeros(n, m) or mpm_zeros([n m]) returns an n–by–m ma-
trix of Inf-s.

Example

1 >> mpm_zeros

2 ans =

3 Inf

4
5 >> mpm_zeros(2)

6 ans =

7 Inf Inf

8 Inf Inf

9
10 >> mpm_zeros(2, 3)

11 ans =

12 Inf Inf Inf

13 Inf Inf Inf

See also
mpm_zero, mpm_one, mpm_ones, mpm_eye, mpm_add

105

Bibliography

Ahuja, Ravindra K., Thomas L. Magnanti, and James B. Orlin (1993). Net-
work Flows. Theory, Algorithms, and Applications. Prentice Hall. isbn:
0-13-617549-X.

Aldous, Joan M. and Robin J. Wilson (2000). Graphs and Application. An
Introductory Approach. Springer-Verlag. isbn: 1-85233-259-X.

Baccelli, Francois et al. (1992). Synchronisation and Linearity. An Algebra
for Discrete Event Systems. Wiley. isbn: 0-471-93609-X. url: http://
www-rocq.inria.fr/metalau/cohen/SED/book-online.html.

Bapat, R.B. (1998). “A max version of the Perron–Frobenius theorem”. In:
Linear Algebra and its Applications 275–276, pp. 3–18.

Blyth, T.S. and M.F. Janowitz (1972). Residuation Theory. Pergamon Press.
Braker, Johannes G. (1993). “Algorithms and Applications in Timed Discrete

Event Systems”. PhD Thesis. Department of Technical Mathematics and
Informatics, Delft University of Technology. isbn: 90-9006669-1. url:
http://repository.tudelft.nl/view/ir/uuid%3Adf4c3874-1255-
485f-a3d8-a0e1bf123914/.

Braker, Johannes G. and Geert-Jan Olsder (1993). “The Power Algorithm
in Max Algebra”. In: Linear Algebra and its Applications 182, pp. 67–89.
doi: 10.1016/0024-3795(93)90492-7.

Cassandras, Christos G. and Stéphane Lafortune (2007). Introduction to Dis-
crete Event Systems. Second Edition. Springer.

Cohen, Guy, Stéphane Gaubert, and Jean-Pierre Quadrat (1999). “Max–
plus algebra and system theory. Where we are and where to go now”. In:
Annual Reviews in Control 23, pp. 207–219.

Cuninghame–Green, Raymond (1979). Minimax Algebra. Vol. 166. Lecture
Notes in Economics and Mathematical Systems. Springer-Verlag. isbn:
3-540-09113-0.

Dasdan, Ali and Rajesh K. Gupta (1998). “Faster Maximum and Minimum
Mean Cycle Algorithms for System Performance Analysis”. In: IEEE
Transactions on Computer–Aided Design of Integrated Circuits and Sys-
tems 17, pp. 889–899.

De Schutter, Bart (1996). “Max-Algebraic System Theory for Discrete Event
Systems”. PhD Thesis. Leuven, Belgium: Faculty of Applied Sciences,
K.U.Leuven. url: http://www.dcsc.tudelft.nl/~bdeschutter/pub/
rep/phd.pdf.

De Schutter, Bart and Ton van den Boom (2008). “Max-plus algebra and
max-plus linear discrete event systems: an introduction”. In: Proceedings
of the 9th International Workshop on Discrete Event Systems (WODES’08),
pp. 36–42.

Floyd, Robert W (1962). “Algorithm 97: Shortest Path”. In: Communications
of the ACM 5, p. 345. doi: 10.1145/367766.368168.

106

http://www-rocq.inria.fr/metalau/cohen/SED/book-online.html
http://www-rocq.inria.fr/metalau/cohen/SED/book-online.html
http://repository.tudelft.nl/view/ir/uuid%3Adf4c3874-1255-485f-a3d8-a0e1bf123914/
http://repository.tudelft.nl/view/ir/uuid%3Adf4c3874-1255-485f-a3d8-a0e1bf123914/
http://dx.doi.org/10.1016/0024-3795(93)90492-7
http://www.dcsc.tudelft.nl/~bdeschutter/pub/rep/phd.pdf
http://www.dcsc.tudelft.nl/~bdeschutter/pub/rep/phd.pdf
http://dx.doi.org/10.1145/367766.368168

Gaubert, Stéphane (1992). MAX: a Maple package for the (max,+) algebra.
url: http://www.cmap.polytechnique.fr/~gaubert/PAPERS/MAX.
html.

— (1997). Methods and Applications of (max, +) Linear Algebra. Research
Report RR-3088. INRIA. url: https://hal.inria.fr/inria-00073603.

Gaubert, Stéphane and Max P. Scilab (1998). “Max–plus Linear Algebra
with Scialb”. In: ALAPEDES Max–Plus Software Workshop. INRIA. url:
http://www.cmap.polytechnique.fr/~gaubert/TPALGLIN.pdf.

Gross, Donald et al. (2008). Fundamentals of Queueing Theory. Fourth Edi-
tion. Wiley.

Gruet, B. et al. (2015). C++ MinMax library. url: http://perso-laris.
univ-angers.fr/~hardouin/outils.html.

Heidergott, B. and R. de Vries (2001). “Towards a (max,+) Control The-
ory for Public Transportation Networks”. In: Discrete Event Dynamic
Systems 11.4, pp. 371–398.

Heidergott, Bernd, Geert Jan Olsder, and Jacob van der Woude (2005). Max
Plus at Work: Modeling and Analysis of Synchronized Systems. A Course
on Max-Plus Algebra and Its Applications. Princeton University Press.

Karp, Richard M. (1978). “A characterization of the minimum cycle mean
in a digraph”. In: Discrete Mathematics 23, pp. 309–311.

Komenda, J., A. El Moudni, and N. Zerhouni (2001). “Input-Output Relation
and Time-Optimal Control of a Class of Hybrid Petri Nets Using (min,+)
Semiring”. In: Discrete Event Dynamic Systems 11.1, pp. 59–75.

Limnios, Nikolaos and G Oproşan (2013). Semi–Markov Processes and Reli-
ability. Springer.

Maia, C.A. et al. (2003). “Optimal Closed-Loop Control of Timed Event
Graphs in Dioids”. In: IEEE Transactions on Automatic Control 48.12,
pp. 2284–2287.

MaxPlus Working Group, INRIA (2003). MaxPlus Toolbox for Scilab. url:
http://www.cmap.polytechnique.fr/~gaubert/.

Menguy, E. et al. (2000). “A First Step Towards Adaptive Control for Linear
Systems in Max Algebra”. In: Discrete Event Dynamic Systems 10.4,
pp. 347–367.

Murata, Tadao (1989). “Petri Nets: Properties, Analysis and Applications”.
In: Proceedings of the IEEE 77, pp. 541–580.

Olsder, Geert-Jan (1991). “Eigenvalues of dynamic max-min systems”. In:
Discrete Event Dynamic Systems 1, pp. 177–207. doi: 10.1007/BF01805562.

Olsder, Geert-Jan, Kees Roos, and Robert-Jan van Egmond (1999). “An
efficient algorithm for critical circuits and finite eigenvectors in the max–
plus algebra”. In: Linear Algebra and its Applications 295, pp. 231–240.

Ramadge, Peter J. and W. Murray Wonham (1989). “The control of discrete
event systems”. In: Proceedings of the IEEE 77, pp. 81–98.

Stańczyk, Jarosław (2016).Max–Plus Algebra Toolbox for Matlab. Version 1.7.
url: http://gen.up.wroc.pl/stanczyk/mpa/.

107

http://www.cmap.polytechnique.fr/~gaubert/PAPERS/MAX.html
http://www.cmap.polytechnique.fr/~gaubert/PAPERS/MAX.html
https://hal.inria.fr/inria-00073603
http://www.cmap.polytechnique.fr/~gaubert/TPALGLIN.pdf
http://perso-laris.univ-angers.fr/~hardouin/outils.html
http://perso-laris.univ-angers.fr/~hardouin/outils.html
http://www.cmap.polytechnique.fr/~gaubert/
http://dx.doi.org/10.1007/BF01805562
http://gen.up.wroc.pl/stanczyk/mpa/

Stańczyk, Jarosław, Eckart Mayer, and Jörg Raisch (2004). “Modelling and
performance evaluation of DES — a Max–Plus Algebra Toolbox for Mat-
lab”. In: 1st Int. Conf. Informatics in Control, Automation and Robotics,
ICINCO’04. Vol. 3. Setúbal, Portugal, pp. 270–275. doi: 10 . 5220 /
0001132102700275.

Subiono and Jacob van der Woude (2000). “Power Algorithms for (max,
+)- and Bipartite (min, max, +)-Systems”. In: Discrete Event Dynamic
Systems 10.4, pp. 369–389. doi: 10.1023/A:1008315821604.

Tarjan, Robert E. (1972). “Depth–first search and linear graph algorithms”.
In: SIAM J. Comput. 1, pp. 146–160.

van den Boom, T. and B. De Schutter (2002). “Properties of MPC for Max–
Plus–Linear Systems”. In: European Journal of Control 8.5, pp. 453–462.

van den Boom, Ton J.J. et al. (2003). “Adaptive model predictive con-
trol using max-plus-linear input-output models”. In: Proceedings of the
American Control Conference 2, pp. 933–938. doi: 10.1109/ACC.2003.
1239706.

108

http://dx.doi.org/10.5220/0001132102700275
http://dx.doi.org/10.5220/0001132102700275
http://dx.doi.org/10.1023/A:1008315821604
http://dx.doi.org/10.1109/ACC.2003.1239706
http://dx.doi.org/10.1109/ACC.2003.1239706

Notation

Here we list some of the acronyms and symbols that occur frequently
in this contribution and with which the reader might not be familiar. The
numbers in the last column refer to the page on which the symbol or concept
is defined.

Acronyms

DES Discrete Event System

Sets

N set of the natural numbers, N = {1, 2, 3, . . . }
N0 set of the nonnegative integers
R set of the real numbers
Rε Rε = R ∪ {ε}

in the (max, +) ε = −∞ 9
in the (min, +) ε = +∞ 30

Rnε set of the column vectors with n components in Rε, i.e. Rnε ≡
Rn×1ε

Rm×nε set of the m–by–n matrices with entries in Rε

Matrices and Vectors

b column vector
(b)i i–th element of the column vector b
AT transpose of the matrix A
(A)ij entry of the matrix A on the i–th row and the j–th column
In (max, +) identity matrix, In ∈ Rn×nε ??
εm×n m–by–n (max, +) zero matrix ??

(max, +) Algebra

⊕ (max, +) algebraic addition 9,
??

⊗ (max, +) algebraic multiplication 9,
??

109

� (max, +) algebraic division ??,
15

e neutral element for ⊗ : e = 0 9
ε neutral element for ⊕ : ε = −∞ 9
A? (max, +) star operator (for square matrix), A? = I ⊕A1 ⊕

A2 ⊕ . . .
21

Rmax (max, +) algebra: Rmax = (Rε,⊕,⊗) 9
Rnε Rε = R ∪ {ε} 9

(min, +) Algebra

∨ (min, +) algebraic addition 30
∧ (min, +) algebraic multiplication 30
e neutral element for ∧ : e = 0 30
ε neutral element for ∨ : ε = +∞ 30
A+ shortest path matrix

(min, +) plus operator (for square matrix), A+ = A1 ∨A2 ∨
. . .

30

A? (min, +) star operator (for square matrix), A? = I ∨A+ =
I ∨A1 ∨A2 ∨ . . .

Rmin (min, +) algebra: Rmin = (Rε,∨,∧) 30
Rnε Rε = R ∪ {ε} 30

Miscellaneous

G(A) precedence graph of the matrix A 17
tr(A) trace of the matrix A 15
λ maximal cycle mean of G(A) 18

(largest) eigenvalue of A 21

110

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document “free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The “Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

111

http://fsf.org/

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the

112

text.
The “publisher” means any person or entity that distributes copies of

the Document to the public.
A section “Entitled XYZ” means a named subunit of the Document

whose title either is precisely XYZ or contains XYZ in parentheses follow-
ing text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Ti-
tle” of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning of
this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright no-
tices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they pre-
serve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

113

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document number-
ing more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin dis-
tribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the Mod-
ified Version under precisely this License, with the Modified Version filling
the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the Docu-
ment). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

114

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not
be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in

115

the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and
a passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “History”;
likewise combine any sections Entitled “Acknowledgements”, and any sections
Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of this

116

License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invari-
ant Sections with translations requires special permission from their copy-
right holders, but you may include translations of some or all Invariant Sec-
tions in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (sec-
tion 1) will typically require changing the actual title.

9. TERMINATION

117

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense, or distribute it is void, and will automatically terminate
your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under this
License. If your rights have been terminated and not permanently reinstated,
receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the

GNU Free Documentation License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License
“or any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.
If the Document specifies that a proxy can decide which future versions of
this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any

World Wide Web server that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those works. A public wiki
that anybody can edit is an example of such a server. A “Massive Multi-
author Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

118

http://www.gnu.org/copyleft/

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit corpo-
ration with a principal place of business in San Francisco, California, as well
as future copyleft versions of that license published by that same organiza-
tion.

“Incorporate” means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere other
than this MMC, and subsequently incorporated in whole or in part into
the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

119

GNU Affero General Public License

Version 3, 19 November 2007
Copyright © 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure cooperation
with the community in the case of network server software.

The licenses for most software and other practical works are designed to
take away your freedom to share and change the works. By contrast, our
General Public Licenses are intended to guarantee your freedom to share and
change all versions of a program–to make sure it remains free software for
all its users.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for them if you
wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs, and that you
know you can do these things.

Developers that use our General Public Licenses protect your rights with
two steps: (1) assert copyright on the software, and (2) offer you this Li-
cense which gives you legal permission to copy, distribute and/or modify the
software.

A secondary benefit of defending all users’ freedom is that improvements
made in alternate versions of the program, if they receive widespread use,
become available for other developers to incorporate. Many developers of
free software are heartened and encouraged by the resulting cooperation.
However, in the case of software used on network servers, this result may fail
to come about. The GNU General Public License permits making a modified
version and letting the public access it on a server without ever releasing its
source code to the public.

The GNU Affero General Public License is designed specifically to ensure
that, in such cases, the modified source code becomes available to the com-
munity. It requires the operator of a network server to provide the source
code of the modified version running there to the users of that server. There-
fore, public use of a modified version, on a publicly accessible server, gives
the public access to the source code of the modified version.

120

http://fsf.org/

An older license, called the Affero General Public License and published
by Affero, was designed to accomplish similar goals. This is a different
license, not a version of the Affero GPL, but Affero has released a new
version of the Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modifica-
tion follow.

Terms and Conditions

0. Definitions.

“This License” refers to version 3 of the GNU Affero General Public
License.

“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this Li-
cense. Each licensee is addressed as “you”. “Licensees” and “recipients”
may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work
based on the Program.

To “propagate” a work means to do anything with it that, without per-
mission, would make you directly or secondarily liable for infringement
under applicable copyright law, except executing it on a computer or
modifying a private copy. Propagation includes copying, distribution
(with or without modification), making available to the public, and in
some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to
the extent that it includes a convenient and prominently visible feature
that (1) displays an appropriate copyright notice, and (2) tells the
user that there is no warranty for the work (except to the extent that
warranties are provided), that licensees may convey the work under this
License, and how to view a copy of this License. If the interface presents
a list of user commands or options, such as a menu, a prominent item
in the list meets this criterion.

1. Source Code.

121

The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form
of a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that is
widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Ma-
jor Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if
any) on which the executable work runs, or a compiler used to produce
the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means
all the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s System
Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes in-
terface definition files associated with source files for the work, and the
source code for shared libraries and dynamically linked subprograms
that the work is specifically designed to require, such as by intimate
data communication or control flow between those subprograms and
other parts of the work.

The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same
work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copy-
right on the Program, and are irrevocable provided the stated condi-
tions are met. This License explicitly affirms your unlimited permission
to run the unmodified Program. The output from running a covered
work is covered by this License only if the output, given its content,
constitutes a covered work. This License acknowledges your rights of
fair use or other equivalent, as provided by copyright law.

122

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes
it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumven-
tion is effected by exercising rights under this License with respect
to the covered work, and you disclaim any intention to limit opera-
tion or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention
of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appro-
priately publish on each copy an appropriate copyright notice; keep in-
tact all notices stating that this License and any non-permissive terms
added in accord with section 7 apply to the code; keep intact all notices
of the absence of any warranty; and give all recipients a copy of this
License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications
to produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

123

(a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

(b) The work must carry prominent notices stating that it is released
under this License and any conditions added under section 7. This
requirement modifies the requirement in section 4 to “keep intact
all notices”.

(c) You must license the entire work, as a whole, under this License
to anyone who comes into possession of a copy. This License will
therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the
work in any other way, but it does not invalidate such permission
if you have separately received it.

(d) If the work has interactive user interfaces, each must display Ap-
propriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used
to limit the access or legal rights of the compilation’s users beyond
what the individual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the other parts of
the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:

(a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium cus-
tomarily used for software interchange.

(b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as long as
you offer spare parts or customer support for that product model,
to give anyone who possesses the object code either (1) a copy

124

of the Corresponding Source for all the software in the product
that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more
than your reasonable cost of physically performing this conveying
of source, or (2) access to copy the Corresponding Source from a
network server at no charge.

(c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This alterna-
tive is allowed only occasionally and noncommercially, and only
if you received the object code with such an offer, in accord with
subsection 6b.

(d) Convey the object code by offering access from a designated place
(gratis or for a charge), and offer equivalent access to the Corre-
sponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the Corre-
sponding Source along with the object code. If the place to copy
the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you main-
tain clear directions next to the object code saying where to find
the Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

(e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be in-
cluded in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means
any tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used”
refers to a typical or common use of that class of product, regardless of
the status of the particular user or of the way in which the particular
user actually uses, or expects or is expected to use, the product. A
product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

125

“Installation Information” for a User Product means any methods, pro-
cedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product
from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as part
of a transaction in which the right of possession and use of the User
Product is transferred to the recipient in perpetuity or for a fixed term
(regardless of how the transaction is characterized), the Corresponding
Source conveyed under this section must be accompanied by the In-
stallation Information. But this requirement does not apply if neither
you nor any third party retains the ability to install modified object
code on the User Product (for example, the work has been installed in
ROM).

The requirement to provide Installation Information does not include
a requirement to continue to provide support service, warranty, or up-
dates for a work that has been modified or installed by the recipient, or
for the User Product in which it has been modified or installed. Access
to a network may be denied when the modification itself materially
and adversely affects the operation of the network or violates the rules
and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly docu-
mented (and with an implementation available to the public in source
code form), and must require no special password or key for unpacking,
reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions. Ad-
ditional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions ap-
ply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place

126

additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms
of sections 15 and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or au-
thor attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

(d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

(e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that mate-
rial by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose
on those licensors and authors.

All other non-permissive additional terms are considered “further re-
strictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a further restriction,
you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you
may add to a covered work material governed by the terms of that li-
cense document, provided that the further restriction does not survive
such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the additional
terms that apply to those files, or a notice indicating where to find the
applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the above
requirements apply either way.

8. Termination.

127

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally, unless
and until the copyright holder explicitly and finally terminates your
license, and (b) permanently, if the copyright holder fails to notify you
of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by
some reasonable means, this is the first time you have received notice
of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work oc-
curring solely as a consequence of using peer-to-peer transmission to
receive a copy likewise does not require acceptance. However, nothing
other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept
this License. Therefore, by modifying or propagating a covered work,
you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically re-
ceives a license from the original licensors, to run, modify and prop-
agate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an or-
ganization, or substantially all assets of one, or subdividing an orga-
nization, or merging organizations. If propagation of a covered work
results from an entity transaction, each party to that transaction who
receives a copy of the work also receives whatever licenses to the work

128

the party’s predecessor in interest had or could give under the previous
paragraph, plus a right to possession of the Corresponding Source of
the work from the predecessor in interest, if the predecessor has it or
can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of rights
granted under this License, and you may not initiate litigation (in-
cluding a cross-claim or counterclaim in a lawsuit) alleging that any
patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or hereafter
acquired, that would be infringed by some manner, permitted by this
License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this
definition, “control” includes the right to grant patent sublicenses in a
manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to make,
use, sell, offer for sale, import and otherwise run, modify and propagate
the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a
patent (such as an express permission to practice a patent or covenant
not to sue for patent infringement). To “grant” such a patent license
to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through
a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent
license for this particular work, or (3) arrange, in a manner consistent
with the requirements of this License, to extend the patent license to

129

downstream recipients. “Knowingly relying” means you have actual
knowledge that, but for the patent license, your conveying the covered
work in a country, or your recipient’s use of the covered work in a
country, would infringe one or more identifiable patents in that country
that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrange-
ment, you convey, or propagate by procuring conveyance of, a covered
work, and grant a patent license to some of the parties receiving the
covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works
based on it.

A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on the
non-exercise of one or more of the rights that are specifically granted
under this License. You may not convey a covered work if you are
a party to an arrangement with a third party that is in the business
of distributing software, under which you make payment to the third
party based on the extent of your activity of conveying the work, and
under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a)
in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection
with specific products or compilations that contain the covered work,
unless you entered into that arrangement, or that patent license was
granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any
implied license or other defenses to infringement that may otherwise
be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey
a covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to
whom you convey the Program, the only way you could satisfy both
those terms and this License would be to refrain entirely from conveying
the Program.

13. Remote Network Interaction; Use with the GNU General Public Li-

130

cense.

Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users inter-
acting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Correspond-
ing Source of your version by providing access to the Corresponding
Source from a network server at no charge, through some standard or
customary means of facilitating copying of software. This Correspond-
ing Source shall include the Corresponding Source for any work covered
by version 3 of the GNU General Public License that is incorporated
pursuant to the following paragraph.

Notwithstanding any other provision of this License, you have permis-
sion to link or combine any covered work with a work licensed under
version 3 of the GNU General Public License into a single combined
work, and to convey the resulting work. The terms of this License will
continue to apply to the part which is the covered work, but the work
with which it is combined will remain governed by version 3 of the
GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Affero General Public License from time to time. Such
new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU Affero General
Public License “or any later version” applies to it, you have the option
of following the terms and conditions either of that numbered version
or of any later version published by the Free Software Foundation. If
the Program does not specify a version number of the GNU Affero
General Public License, you may choose any version ever published by
the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions
of the GNU Affero General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different permissions.
However, no additional obligations are imposed on any author or copy-
right holder as a result of your choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

131

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PRO-
GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-
FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SER-
VICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above
cannot be given local legal effect according to their terms, reviewing
courts shall apply local law that most closely approximates an absolute
waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program
in return for a fee.

End of Terms and Conditions

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively state the

132

exclusion of warranty; and each file should have at least the “copyright”
line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper
mail.

If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a “Source” link that leads users to an archive of
the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.

You should also get your employer (if you work as a programmer)
or school, if any, to sign a “copyright disclaimer” for the program, if
necessary. For more information on this, and how to apply and follow
the GNU AGPL, see http://www.gnu.org/licenses/.

133

http://www.gnu.org/licenses/

Index

Examples
exGanttr.m, 43, 47
exGanttx.m, 62
exMultiProduct.m, 43
exSimpleProduction.m, 39

Functions
(max, +) algebra
mp_add, 48–49
mp_conv, 49
mp_div, 49–52
mp_egv_bo93, 52–53
mp_egv_o91, 53–54
mp_egv_pqc, 54–55
mp_egv_sw001, 55–56
mp_egv_sw002, 56–57
mp_ev_fw, 57–58
mp_eye, 58–59
mp_ganttr, 59–61
mp_ganttx, 61–63
mp_inv, 63–65
mp_is_egv1, 65–66
mp_is_egv2, 66–67
mp_is_pga, 67–68
mp_is_pgc, 68
mp_is_pgsc1, 68–69
mp_is_pgsc2, 69–70
mp_Karp, 73
mp_mcm, 70–71
mp_mcm_fw, 71–72

mp_mcm_karp, 72
mp_multi, 73–74
mp_mx2latex, 76–77
mp_mx_fw, 74–76
mp_one, 77
mp_ones, 77–78
mp_power, 78–79
mp_pqc, 79–80
mp_randi, 80–81
mp_solve_Axb, 81–83
mp_solve_xAxb, 83–84
mp_star, 84–87
mp_system, 87–88
mp_trace, 88–89
mp_zero, 89
mp_zeros, 89–90

(min, +) algebra
mpm_add, 90–91
mpm_div, 91–93
mpm_eye, 93–94
mpm_inv, 94–95
mpm_multi, 95–97
mpm_mx2latex, 97–98
mpm_one, 98
mpm_ones, 98–99
mpm_plus, 99–100
mpm_power, 100–102
mpm_star, 102–104
mpm_zero, 104
mpm_zeros, 104–105

134

	Max-Plus Algebra Toolbox
	Title Page
	Contents
	Preface
	Technical Conventions
	Copyright Information
	Feedback
	Installation
	Installation in GNU Octave

	Introduction
	(max, +) algebra
	Basic operations
	Matrices
	Connection with graph theory
	Linear equations
	Problem Ax = b
	Problem x = Ax b
	Spectral problem Ax = x

	A bit of the (min, +) algebra
	State space description of DES
	Introduction
	State space description of timed event graph
	Analysis of DES
	Graphical representation – Gantt charts

	Examples of DES
	A simple production system
	Multi-product manufacturing system

	Miscellaneous functions and data structures
	Functions
	Data structures

	Toolbox function reference
	mp_add
	mp_conv
	mp_div
	mp_egv_bo93
	mp_egv_o91
	mp_egv_pqc
	mp_egv_sw001
	mp_egv_sw002
	mp_ev_fw
	mp_eye
	mp_ganttr
	mp_ganttx
	mp_inv
	mp_is_egv1
	mp_is_egv2
	mp_is_pga
	mp_is_pgc
	mp_is_pgsc1
	mp_is_pgsc2
	mp_mcm
	mp_mcm_fw
	mp_mcm_karp
	mp_multi
	mp_mx_fw
	mp_mx2latex
	mp_one
	mp_ones
	mp_power
	mp_pqc
	mp_randi
	mp_solve_Axb
	mp_solve_xAxb
	mp_star
	mp_system
	mp_trace
	mp_zero
	mp_zeros
	mpm_add
	mpm_div
	mpm_eye
	mpm_inv
	mpm_multi
	mpm_mx2latex
	mpm_one
	mpm_ones
	mpm_plus
	mpm_power
	mpm_star
	mpm_zero
	mpm_zeros

	Bibliography
	Notation
	Acronyms
	Sets
	Matrices and Vectors
	(max, +) Algebra
	(min, +) Algebra
	Miscellaneous

	GNU Free Documentation License
	GNU Affero General Public License
	Index

